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Abstract of the Dissertation

The Bayesian Approach to Recursive State Estimation:

Implementation and Application

by

Stuart Charles Kramer

Doctor of Philosophy in Engineering Sciences (Systems Science)

University of California, San Diego, 1985

Professor Harold W. Sorenson, Chairperson

In Bayesian estimation, the objective is to calculate the complete density func-

tion for an unknown quantity conditioned on noisy observations of that quantity. This

work considers recursive estimation of a nonlinear discrete-time system state using suc-

cessive observations. The formal recursion for the density function is easily written, but

generally there is no closed form solution. The numerical solution proposed here is

obtained by modifying the recursion and using a simple piece-wise constant approxima-

tion to the density functions. The critical part of the algorithm then becomes a discrete

linear convolution that can be realized using FFT's.,Hence this approach requires only

O(Nln(N)) (where N is the number of grid points in the approximation) operations for

the convolution instead of the O(N2 ) of previous solutions. The approach also allows

detailed analysis of error propagation through the algorithm. This allows characteriza-

tion of the situations leading to potentially large errors and derivation of the bound on

the maximum error growth. The algorithm is shown to be quite stable by comparing its

long-term performance to a Kalman filter for a linear system with Gaussian noises.

Two potentially broad uses for the technique are then explored. First, the technique

can be used to gain insight into stochastic system behavior by visualizing the propaga-

tion of the density through time. Second, it provides a benchmark for traditional point

estimators, since the true optimal estimate for any given loss function can be calculated

from the conditional density. To illustrate these uses, we consider two nonlinear appli-

cations: simultaneous state/parameter estimatioai and bearings-only tracking. In both

cases the density behavior is analyzed, and then displayed graphically. The mean of the

'J "7
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1. INTRODUCTION

1.1. The Bayesian Approach to Recursive State Estimation

The Baylesian approach to state esinlation is based in the Bayesian philosophy

of statistic,. which is a subject unto itself. For the sake of brevityv we will only briefly

discuss some facets of the Bayesian approach which have direct bearing on this work.

For more detailed discussions of arid justifications for the approach, the reader must

refer to the considerable literature on the subject. References [11-131 and 135]-;37] are a

sampling of applicable works. The interested reader will undoubtedly find many addi-

tional useful references with minimal effort.

For our purposes it is enough to note that there are two distinguishing features

of the Bayesian approach. The first, and less controversial, is the recognition that the

ultimate use of estimation (or more correctly, statistical inference) is to provide a

rational basis for decision making under uncertainty, and that this function is the first

stage of the decision process. The second stage is picking a policy to maximize an

expected value or minimize an expected loss. Bayesian statistics provides the frame-

work for the calculation, manipulation, and interpretation of probability densities as a

basis for decision making. Decision theory provides the utility of loss function, calcu-

lates expectations, and maximizes or minimizes in the process of making a decision. As

an example, consider the optimal stochastic control problem. The decision is what con-

trol policy to adopt iii order to niinirrize the expected value of some cost functional.

Calculating the density function to be used in taking the expectation is independent of

the choice of cost functional. The Bayesian viewpoint merely makes this separation

explicit.

The second feature of this approach arnounts to the replacement of the word
'raidom' with the more general terin 'uncertain' in our probabilistic discussions. It does

riot. matter whether the uncertainity arises from a truly randon process or frori a deter-

miristic process that is sufficiently complicated or poorly understood that we are uncer-

tain of its state. All types of uncertainty equate to randomness. Broadening our defini-

non of random in this way is riot as far-fetched as it may seem; even classical statisti-

cians do it at tinies. As an example, consider the over-used coin flip. It is not really a

random event in the classical sense. That is, if I could in fact exactly duplicate the
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conditions of a toss, all the applied forces and the timing of the catch axid all the other

factors, then I would get the same result each time. Tfaken the other way, if I had suffi-

cient knowledge of the physical fac,,ors affecting *.e coin, I could predict the outcome

with complete certainty. We are only willing to accept it as random because this is

such a complicated system (person and coiun together) that we generally have insuffi-

cient knowledge to predict its outcome(. As another example closer to an engineer's

heart, look at computer generated pseudo-randomi numbers. For most practical pur-

poses we accept, these as random, when in fact they are generated by a (very comnpli-

cated) purely deterministic procedure. A more extreme example is the problem of

parameter identification. For a given system, the unknown parameter has a definite

value, If we could measure it, it would become a known constant. It is clearly not a

random variable in the classical sense, yet the standard engineering practice is to treat

it as such. If anything, this broader interpretation of random is probably closer to most

engineers intuitive understanding than the classical definition.

Complementing the broadening of the definition of random is a reinterpretation

of the probability density associated with an unknown quantity. In the Bayesian view,

the density represents the observer's judgement of the relative likelihoods of the possible

outcomes. Put another way, the density function is a measure of the observer's

knowledge about the unknown quantity. This interpretation raises several points.

First, the density function is a feature of the system/observer pair, and is not an intrin-

sic feature of the system. Furthermore, it may be legitimately different for different

observers of the same system, since different observers may have differing amounts of

information about the system. Second, the observer must be able (willing?) to quantify

his knowledge in the form of a density function. While we will take the position that

this is a given, we point out that it is not a trivial problem. Third, this interpretation

need not be at odds with the classical relative frequency interpretation. Faced with a

system for which we have historical information, it is reasonable to assume (without

iniformiation to the contrary) that the same relative frequencies of outcomes will con-

tijiue. Lastly, despite the broadening of our interpretation, all the familiar rules for

inaiiipulatung densities still apply.

Now look at these two ideas in the context of an estimation problem. Since we

want eventually to use our information in a decision process, and since the density

describes our information, we must need to calculate the entire density function for the
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unknown quantity. This will describe the probability (likelihood) of a particular out-

come conditioned on our knowledge. If we are fortunate, we may have subsequent

observations of the sy -er. The additional information can be incorporated into our

density using standard probability theory, resulting in a new density conditioned on our

increased knowledge. Agaii, the entire density is required to describe the information

we have about the unknown quantity.

The main point is that the Bayesian objective is to calculate the entire proba-

bility density function of the unknown quantity, based on the available information.

This work focuses on the discrete-time state estimation problem, where we want infor-

mation about the state of a system given imperfect observations of the system. More-

over, we want to do so recursively, so that we update our information step by step as

we get new observations. We will see shortly that this problem naturally yields a recur-

sive solution.

1.2. The General Solution

In the present case, the unknown quantity is the state of a discrete-time system

which propagates through time according to

where zkE R' is the system state at time k > 0, % E Rm is the known control applied to the

system, wkE R' is an unknown disturbance, and fA:R"×xR' xR'-- R' is the system transi-

tion function. The only assumption on the times represented by k is that they are

sequential; in particular, it is not necessary that they are equally spaced in time. Note

that the system is memoryless, in the sense that the the state at time k - I depends only

on the state and inputs at time k, and not on the past history of the state or inputs.

The information available to us is contained in a set of measurements, augmented by

the known inputs. The measurements zA R° are given by

,. - hi(zk,v )

where v, RP is an unknown disturbance, and h,:l", - RP R0 is the measurement function.

For convenience define the information vector

ZA - {z,,u, ; i-0,k}

The vector Z, represents all the information we have gathered about the system during

................................ %°o . •" "'.• .°...............-. - . . ....... -. -... . -. ---. . -..... .:-. .' -.:,.-- -. ',F, :":': -. . ,-.--'. -'--.:.'v .- ::-':-: . .'
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its operation.

Suppose that we wish to solve the prediction problem. In other words, we want

to know at each time k the state of the system at the next time, k-I. In view of the

unknown disturbances Jii the system and the observations, it is clear that we cannot

know this precisely. We can however riake an assessment of the likelihood of the sys-

tem state taking oni any particular value based on the information available to us. In

the Bayesian vie%, this means we want to calculate the conditional prediction density

p(zk,,, ZA). Applying elementary rules for manipulating densities, we can write

J P(uI zk,ZA-i) dzi

If we define the time update density tk as

t,(Zki,.Z) -rkZ)p(ukxkzkZki)
p(Uk I zk,zk_,0

then the above becomes

P(Zt~liI A) = f p(zt Zki,,zk) £k(zk iZk) dik(11

The function tk represents the likelihood of the system state transitioning from a given

state at time k to another at k +1, and is calculable from the model description and the

information vector. The density p(zk I Zk-zk) is the conditional density for the state at

time k given observations through time k, and is known as the filtering density. We see

from (1.1) that the conditional prediction density is the nonlinear convolution of the

current filtering density and the time update density.

Let us look now at the filtering density. Applying Bayes' theorem, we get

Sp(' I Z. ,zk) p(ZkI ZA -1) P(zkl h,ZA ,)

P (zk I Z-1)

p(zkI Zk 1) p(zkI Z-k, Zi)

f P(XkI Zk 1 ) p(Zk Ik,Zk ,) dzk

l)tDii the measurement update density rnA as

-Ak(Z , 2k) P(zk~ Zk,zk..)

so that the above becomes

P (ZAZkiz) p(zI ZA-1) mk(zk,z ) (1.2)
f p(zkI Zk1) k (zA Zk) dzk

:-. . ......... ........ . ............ -................ -....... .. : :........:



Ihe rmeasuremuent update density describes the likelihood of getting the particular obser-

vation zk from different possible state values, and is calculable from the model descrip-

tion arid the data. Equation (1.2) shows that the filtering deinsit) is obtained by multi-

plying the last prediction density by the measurement density and then normalizing.

We can continue to apply (1.1) and (1.2) alternately until we- reach k 0. At

that point, we must assume an initial density p (x) p(xo.Z 1), the prediction density

for the state at tirme zero before any observations art, made. The three elements that we

need to compute p(zk, l Zj then are p(zo), and rn, and t, for i=l,k. These densities are

known as tle priors for the problem and summarize our a priori knowledge about the

behavior and structure of the system. Although the time and measurement update den-

sities may in general depend parametrically on the particular measurement realization,

they are structurally determined by tile system model.

Viewed from thle opposite direction in time (from t=O forward), equations (1.1)

and (1.2) form a natural recursion. Given the priors, we alternately calculate the condi-

tional prediction density and conditional filtering density as we accumulate observa-

tions. These two equations represent the complete formal solution to the recursive

Bayesian state estimation problem. Although the solution is easy to obtain in this gen-

eral form, its practical solution is not so simple. As in many cases in engineering,

approximate methods of solution must be devised.

1.3. Structure of this Dissertation

This dissertation is basically divided into two parts. First, we develop a new

approach to the implementation of equations (1.1) and (1.2). Then, we use that

approach as a tool in exploring some estimation problems.

Beginning the first part, chapter 2 discusses previous work in developing

approximate ways of implementing the recursion, and relates this work to those efforts.

iasically what has been done is to approximate the densities in various ways, so that

.lie convolution in (1.1) alid thle integration in (1.2) can be done numerically. The

apJroac'h here is to use a simple approximation (piecewise constant) that results in a

computationally efficient algorithm. The algorithm itself is presented in Chapter 3.

First the basic equations are derived for a somewhat more restrictive model than the

one given in the previous section. Next, implementation of these equations is discussed,

since the computational advantage of this method obviously depends on the

. . . . . . . . .. . . .



ilipleiiientat loll details. liiall , s iii this is all approximate method and there is some

error associated witl, it, an analysis of t he urror aid its propagation is presented.

('hapter 4 covers sonit simnpule exanmles of tie application of the algorithm to

demlionstrate its perforrlance. A scalar linear s\ sitl. %h ih Gaussian noise is considered

first. 'his allow- the approximation to be ctmilpared against the exact solution, since

till. uxat solliion for this case is given b) Ihl Kalian filler. This sinple example is

st iid ed quite thoroughly to demonstrate the iprformalnce of this technique. Finally, a

silliple. noilinear, non-Gaussian case is coisidered to fiirther denionstrate the iiethod.

I sing this algorithm as a tool, we ttiei= look at some broader issues associated

%%ith the Bayesian approach. Even with the computational iniprovement of this

iimethod, the Bayes solution is fairly expensive. The logical question is what do we gain

by using this approach. The answer to that, of course, is highly prob'em dependent.

We can describe, however, several general ways that the algorithm can be of use to us.

First, sirmply working with the equations arid thinking of the process in terms of opera-

tions on densities provides a deeper understanding of the mechanics of the process. For

niore detail, we can use the close approximation of the posterior density that the algo-

rithin generates to plot the prediction density or develop other useful descriptions of it.

This can provide additional insight into the behavior of the system, arid is useful in

iiuch the saine way as traditional simulation is for deterministic systems. Furthermore,

as is done with deterministic simulation, we can use the technique to examine how the

beiavior of the system varies as we change features of the system. Finally, again since

we have a representation of the posterior density, we can actually calculate the optimal

estimator for any given loss function. Thus we can compare the performance of tradi-

tional point estimators directly to that of the optimal. In this way we can judge, for

instance, whether apparently poor performance is a fault in the estimator, or is actually

just the best that one can expect. This could be particularly useful in assessing tran-

sierit performance. where there are virtually no theoretical results. In Chapter 5 we con-

Sider these uses in a concrete situation, in the context of the problem of simultaneous

slatec all(] parameter estimiation for a linear system. In Chapter 6 we continue by look-

Ing iII soiie detail at a passive tracking problem, where the measurements consist only

of bearings to a target. Lastly, Chapter 7 contains a summary of the major conclusions

of this work.

•. . .- . . .. . . . . . . . . .........-. ... . . .-. . . , .- . -.. . .:, ,> ,- .
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2. REVIEW OF PREVIOUS WORK AND RELATION TO THIS EFFORT

Equations (1.1) and (1.2) represent the most general solution to the recursive

Bayesian state estimation problem. The difficulty is that there is generally not a closed

form solution to this recursion. The notable exception is when the system is described

by the linear equations

z='1 : Fkzk - GAtW

z A  Hk zk + vt

where wh and vi are white Gaussian sequences uncorrelated with the state. If the initial

density is Gaussian, the conditional densities remain Gaussian, and the mean and vari-

ance of these densities propagate according to the well-known Kalman filter equations.

Since a Gaussian is completely described by its mean and variance, the Kalman filter is

in fact the Bayes solution for this model. This fact apparently was first noted by Ho

and Lee 1331.

Ideally, we would like the densities to maintain the same functional form, as in

the linear Gaussian case, so that the Bayesian recursion could be accomplished by alge-

braically updating a finite number of parameters. Densities with this property are

known as reproducing densities. Spragins 1341 has shown for the special case of recur-

sively estimating a fixed parameter that a reproducing density exists if and only if there

exists a sufficient statistic for the data which is expressible as a vector of fixed length.

This is not true in the general case, however, because of the presence of the time update

due to the system dynamics and input noise. Reproducing densities have been shown to

exist for a few particular combinations of system dynamic functions and noise densities

[4,51, but they are not generally useful. It is difficult to find reproducing densities for
this recursion because of the two very different operations involved: multiplication for

the measurement update, and non-linear convolution for the time update. Closure with

respect to both operations is rare.

When the model is not linear Gaussian, we must look for approximate means of

evaluating the recursion (1.1)-(1.2). The earliest, and certainly the most used approxi-

mation, is the extended Kalman filter or EKF. In the EKF, the system model is linear-

ized about the mean of the last prediction density and the Kalman filter equations

applied directly to the linearized system. In the Bayesian context, this amoLnts to

7
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approximating the measurement and time update densities by Gaussians. This in turn

implies that the conditional densities are approximated by Gaussians. Clearly, this is a

crude approximation, highly dependent on the quality of the linearization and the

actual form of the noise densities. lIn practice, however, this approximation has been

shown to be reasonably good in a wide variety of cases. (For a number of good exam-

ples of applications of the EKF, see 1321.) Its principal advantage is that it is by far the

coiputationally simplest of all the approximation techniques. On the other hand, the

EKF is subject to divergence, where the actual error in the estimate exceeds the error

covariance approximation provided by the filter. The EKF also has poor transient

response in many cases, even though the steady state performance may be acceptable.

The difficulties arise since the relatively smooth approximating Gaussian may miss

important features of the true densities. Considerable work has been done on improving

the EKF by various means, but we will not discuss those modifications here. Since vir-

tually all of these techniques are derived as point estimators, and not as true approxi-

mations to the conditional densities, they are not Bayes estimators.

Series expansions such as Gram-Charlier and Edgeworth expansions were the

next attempt to improve the fidelity of the density approximations 16-111. In this tech-

nique, the densities are approximated by an infinite sum of polynomials which are

orthogonal with respect to the Gaussian density and can be used to represent a large

class of other densities. The convolution of (1.1) can then be represented as the sum of

convolutions of the simpler polynomials. In theory, this can provide arbitrarily good

approximation to the actual densities. In practice, however, it was found that a large

number of terms are needed to get reasonable accuracy for distinctly non-Gaussian den-

sities. In addition, when the series are truncated, as they must be, the resulting approx-

imation can be negative over parts of the state space. Hence the approximation may

not be a density itself. This can cause significant disturbances in subsequent approxi-

mxate densities, as well as in any expectations taken in the decision process.

Both these previous techniques are essentially local techniques, since they are

designed to be most accurate in a restricted central region. The remaining techniques

we will discuss are global, in that they attempt to provide a uniform degree of approxi-

mation over the entire densities. (This distinction is due to Sorenson 1311.) There are

basically two global approaches: direct approximation of the densities, and approxima-

tion of the integrals in (1.1) and (1.2). Both approaches are based on sampling the
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densities at points distributed through the region containing non-negligible probability.

In function approximation, the points and the approximate density values at those

points are chosen on the basis of matching some interpolating function to the density.

The integration (or functional) approximation approach picks the points based on a

particular numerical integration scheme. Of course, the two approaches are usually dual

in the sense that a particular interpolation method results in the integration being

equivalent to some numerical integration approximation, and similarly, a numerical

integration method implies a particular interpolation scheme. Nevertheless, this distinc-

tion is useful for classifying the approximate Bayes methods.

The simplest of the global function approximation methods is the point-mass

method introduced by Bucy 1121 and elaborated by Bucy and Senne 1131. In this

method, the densities are approximated by point masses located on a regular grid. To

keep the grid compatible with the evolving density while reducing storage requirements,

Bucy and Senne proposed a floating rotating grid. The grid at each time is centered on

the mean of the prediction density and based on the eigenvectors of the covariance

matrix. Bucy and Senne also reduced storage by retaining only those points in an ellip-

soid based on the covariance matrix. The size of the ellipsoid is chosen so that only a

fixed fraction of the total probability mass is discarded. The final refinement was the

use a separate grid for each mode if the densities were multimodal. Given an a priori

density approximated in this way, the filtering density resulting from (1.2) is also a col-

lection of point masses. The convolution of (1.1) can then be written as a summation.

This summation is then evaluated at the new grid points to provide the approximation

to the new prediction density.

An alternative approach was introduced at about the same time by Alspach

and Sorenson (14-17J. In this method, the densities are approximated by a weighted

sum of Gaussians, each centered on a different point in state space. The recursion can

then be written as a collection of EKF's operating in parallel. Since each Gaussian in

the suin has comparatively small variance, it is more likely that the linearization in the

EKF will remain a valid approximation. The choice of grid point locations, variances,

and weights is best done by minimizing the L2 norm of the error, although approximate

methods can be used to reduce computation.

Both these methods, particularly the point-mass method, have considerable

computational and storage requirements, although they can provide reasonably accurate

---------------------------------
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density approx imat ions. These requirements were considered excessive in light of the

computational resources available at the time they were developed. Both speed and

storage were quite limited compared to that available today. Of the two limitations,

storage was actually the more restrictive. This tended to make it more profitable to

trade off storage for computational comrplexitN. For a given desired accuracy, it was

clear that you could get by with fewer grid points if you used a more sophisticated

interpolation scheme. A theoretical framework for this work was provided by Center

1181 who considered the problemn in terms of generalized least squares. His approach

allowed for the development of an essentially unlimited number of different approxima-

tions, of which the point-mass and Gaussian sum approaches are examples. Most of the

remaining work in this direction focused on different spline approximations [19-22].

The most recent of the function approximations is the p-vector approach of

Sorenson 1231. This method is derived from the Gaussian sum method by taking the

limit as the variances of the individual Gaussians go to zero. It is also related to the

point-mass method, but provides a computational advantage over both. This method

also reduces the convolution (1.1) to a summation.

The alternative approach of approximating the integral followed much the same

path. All such methods amount to replacing the integral with a weighted sum of Sam-

pies of the integrand. The particular quadrature formula used determines the locations

of the samples in state space and the weights used in the summation. The basic issue

again is trading off computational complexity against the number of sample points

required to achieve a desired accuracy. Klein 124-271 in particular has investigated a

number of different quadrature formulas.

All these global techniques share two related elements:

1. The method must provide a procedure for defining the initial and subsequent

grids. For computational efficiency, the grid should be redefined at each time

to track the conditional densities. The elements of the grid which must be

specified are the boundaries of the grid in state space, and the number and dis-

tribution of points within the boundary. The distribution of the points will

usually depend on the approximation technique that will be used. In most of

these techniques, setting up the grid is a non-trivial problem.
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2. Given the grid, the mneans of performing the Bayesian update must be specified.

This will depend on the particular approximation (either function or integral)

that is chosen. In almost all cases (except. Gaussian sum) this results in replac-

ing the convolution (1.2) with a discrete nonlinear convolution. It is this opera-

tioni which tends to be tlic most expensive comiputationally since it requires on

the order of N' operations,-wbere N is the number of grid points.

As discussed above, the direction of previous research has been determined pri-

marily by the limitations in computing power that existed in the early seventies.

Recent advances in computer hardware have loosened those limitations, It is now rea-

sonable to reduce computational complexity at the expense of storage requirements. As

memory costs continue to decline and computer speeds increase, this trade-off becomes

even more favorable. This change in the computing environment motivated the work

presented here. The basic approach is to use a simple approximation to the conditional

densities in order to obtain a fairly simple representation of the recursion (1.1)-(1.2).

The method that will be presented in this dissertation is based on approximat-

ing the conditional densities by functions piecewise constant on regions defined by a reg-

ular grid. This has several advantages:

1. The grid can be described in a particularly simple way; the region of interest is

filled with a number of identical multidimensional polyhedrons. This results in

an easy grid update.

2. The density approximation has a simple form that makes such operations as

taking expectations easy. This is important since we expect the density to be

used in some decision making process which usually involves taking the

expected value of some cost functional.

3. The convolution (1.1) can be written as a discrete linear convolution instead of

a discrete nonlinear convolution. This allows the convolution to be calculated

using FFTs at a cost proportional to Nin (N) instead of N".

4. The error in approximating the conditional densities and its propagation

through the recursion can be analyzed in a straightforward way. Although the

error bounds turn out to not be extremely tight, the analysis does point out the

situations in which lead to poor performance.
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Ailh ough the idea of using piecewise constant approximations has been men-
tioned briefly before 28, it was not pursued. The idea of mranipulating the recursion to
achieve a linear convolution appears to be niew. Thle use of FFTs for evaluating convo-
lutions is, of course, not new, but application to this problem is. Finally, the propaga-
tion of the error through the recursion has not been addressed in any depth before.



3. THE ALGORITHM

3.1. Assumptions, Notation, and Conventions

Before we derive the proposed algorithin, we must specialize the very general

model introduced in Chapter 1, and introduce some niotation that will make the follow-

ing presentation clearer. We will restrict our attention to systems modeled by

.,I fk(rk,uk) + wA

z hk(zvk) (3.1)

The noise sequences {wA} and {Vk} are assumed to be white and zero-mean, to be

uncorrelated with the state and with each other, and to have densities with finite sup-

port. The control sequence {uA } is either a priori known or calculable at each time from

only the available observations, which implies that P(ukl zk,ZA-,zk)=P(ukI zk,Zk-l). The

system dynamics function IA and the observation function hk are at least measurable

functions.

While this is a more restrictive model than that of Chapter 1, it is still quite

general. In fact, many systems which at first might not appear to fit these assumptions

can be modeled by (3.1). For instance, colored noises call be included by appending a

subsystem driven by white noise, whose output is the desired colored noise. In other

cases, this model can provide an adequate approximation. As an example, consider

Gaussian noise. It has a density with infinite support. An adequate approximation

might be to truncate the support at, say, plus and minus three standard deviations. (Is

anything really Gaussian anyway? Given the experimental observation that most 'real'

noises are thinner in the tails than the Gaussian, the above might actually be a more

appropriate model in many cases than assuming Gaussian noise.)

Restricting ourselves to the miodel above allows us to simplify the expressions

for the densities of interest. Applying elementary rules for manipulating densities, as we

did in Chapter 1, we can write th .' e.iuations for the conditional prediction and filtering

densities for the model (3.1) as

P (ZI ZA) c' P I ( I z, ) J p (Zl ZA)

C f P(zI zk_1) P(zAI hA) dz (3.2)

13
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Following standard practice. nultidimrerisional integrals as above are understood to

lleall

f dx 9(r) - f dxj f d jr 2) J -1 o) -I.))

where z(,) is the tth couiponeF t of the vector z. Unless otherwise noted, integrals are

assumed to be over the entire support of tie integrand.

From the model we note that

P(z*,+l zk,,U) P..,k(xk,,-fk(zk,uk))

where p.., is the density function for w,. Now, for notational convenience, we define

'r () - 'r h(Z') = P (ZAI ZA - )

SX,(z) - - p(z) -A

O(X) OaX) PWkl x)(3)

As implied in the above definitions, we will drop the explicit dependence on the time k

whenever there is ,no ambiguity. To help iiiininiize confusion, the variable k will be

used only to denote the time. With these definitions, the recursion (3.2) becomes

0(-) ( C' ) p(x,z) (3.4)

,,,,,(X1 = f 0(y,) r1 -f ly,ul) dy (3.5)

where the normalizing constant C is chosen so that fp(z)dz=1.

In actually computing the recursion, we will use approximations to the above

densities. A hat will be used to signify an approximate density, and a tilde to signify

the associated error function. Hence, we would write i(z)=n(r)-r(x). We will be

approximating the densities on a regular multidimensional grid in state space defined by

the points z, AJi b, where j is an n-vector with integer elements, each in the range 1 to

M. T ere are, therefore, I -M" total grid points. The n x n matrix A and tle n-vector

b are chosen so that the grid covers some region of interest. Each point z) of the grid is

the center of a cell ini R dcfined by

I, - {z -Y ix, t V I

"......... -.-. .. . ......•- . •"-."... ._. .....--- " -:".-.'-:.. ",
---- . ... -*.-. ......... , .. . . +- . ... ,. ..- .. *.. -.- -.. +
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where 1, is the generic cell given by

11z -A -y y~t 11. ) 2

The volume of each cell, which we will call a, is given by det(A ) . Note that the only

restriction on .4 is that detlA ) 0. Thus we are not restricted to rectangular grids, and

so have increased flexibility in tailoring the grid to the densities. Figure 3.1 shows two

examples for n=2 and M 3. Observe also that _ I covers the entire region of interest

(by definition of the grid), and that 1, 1,=0 for ii J.

2..

0 .
4.

-2 2 .

Figure3.1 Example grids using (a) A 1 and (I)A=1 21i , b=ii

Finally, we note that we will be using multidimensional summations in the work

ahead. They are exactly analogous to integrals, so

M M

Like integrals, the sum is assumed to be over the entire grid when no limits are speci-

fied.

3.2. Derivation of the Algorithm

As discussed in the introduction, the difficulty with the recursion we have

derived for calculating the conditional prediction density is that there is generally no

closed form solution. This being the case, we are forced to look for some means of

approximating the recursion. The approach here is to approximate the prediction den-

sity irk by a piecewise constant function, and then apply (3.4) and (3.5) to recursively

....................................................



update the approximate prediction density. In deriving the algorithm, however, we will

start with 7r &, and work backward.

Begin by considering a slightly modified version of equation (3.5). If we define

y=f (z,u), then the state update equation becomes

SZ i Il -t Wk

and then (3.5) becomes

z(z) - P(y) r(z-v) dy (3.6)

where 4'(y) is the conditional density function p(vI Zh) and S(O) is the support of 0.

Notice that (3.6) is a linear convolution. Now assume that we have defined a grid that

covers the support of r. (We will discuss how to get such a grid a bit later.) The best

L, or L2 constant approximation to a function over a region is the average of the func-

tion over that region. Hence, the best piecewise constant approximation to X on the

given grid is i(z)=*,, zE 1,, where

x, x (z) dx = if dz dy 0(y) r(z-y) (3.7)

with the last equality due to (3.6). Since wk is a zero-mean sequence, we know that the

origin is contained in S(r), the support of r. This implies that S(O)c S(r), so the

assumed grid also covers the support of 0. We can therefore use the covering property

of the grid to break up the inner integral in (3.7) to get

= fdz dv ()r(z - Y) dx dy (y) r(z-y)

The interchange of summation and integration is justified since it is a finite sum. If we

now now replace 0(y) with a piecewise approximation ,b(y)=iP, yE I, we get

'k, dz dy r (x-- y) (3.8)

Consider the double integral above; using the definition of the grid, and with a change

of variable, we get

.fdx [dy r(z-y) =a fdbi d6 2 r(A (i -).+61-62) (3.9)

Note that the result is a function only of the difference (i-j); this is crucial to obtaining

i .. . . . . . ,. . . . . . . . . .. , ... - . " . ". .. .' ... .. .
. -'

." ' ,' ", .- ".. . -
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a discrete linear convolution. If we call the result of (3.9) r, ,, then we get from (3.8)

7 , .k .: , , _ ( 3 .1 0 )

We note this is a discrete linear convolution. Equation (3.9) is also the expression for a

times the best piecewise approximation to r over the region i, il, so in a sense we have

replaced both 0 and r with their piecewise constant approximations in getting to equa-

tion (3.10).

To get to equation (3.8) we introduced the piecewise constant approximation to

0. As with z we define i(y)=O,, yE I,, where

a

Recall that 0(y) is the conditional density of y=f(z,u). Using this, and suppressing the

conditioning in the notation, we can rewrite the integral as

O(y) dy Prob(y1E 1I) Prob(zE i ;H, =(z:f(z,u)EI,} =) f(x)dz (3.11)

As long as f is measurable, H, is a measurable set (since it is the inverse image of an

open set), and so the integral is well defined. Now suppose that we have the piecewise

constant approximation e&(z) from the last time step, defined by i(z}'-,, zEli.,,

with lA., based on the grid from the last iteration. Using this, and the definition of 0

from (3.4), in (3.11), we get

O(z)dz f ic-k(z),,(zz)dz= C-1, 7F A(z). p(z,z) dx

C EW') u (z,z ,)dz

In the above we used the fact that the old grid covers the support of eA, just as the

current grid covers the support of the current e. This now allows us to write 0, in

terms of the previous prediction density and the measurement update density as

0.: C Ir k 1A(z,z) dz (3.12)

The integral term above is the constant approximation of p over the region H,n I,.

Hence, as with (3.10), we have effectively replaced both densities with their approxima-

tio n s .

-...................................... . . . .
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The constant C in (3.12) is to be chosen so that thu densities are properly nor-

malized, that is, so that they integrate to one. Since we are primarily interested in the

prediction density approximation 7f, it is convenient to move the constant from (3.12)

to (3.10) and leave V, unnormalized. Applying the normalization requirement to f and

using the modified form of (3.10) gives

Sf(x)dz - a 7 a C 'r , r
0 S

Therefore, we must have

C ,(3.13)

We now have the basic relations for recursively calculating the approximation

to the conditional prediction density. Combining (3.9), (3.13), and the modified ver-

sions of (3.10) and (3.12), we get

H, = {z fk(zu)E 1j) (3.14a)

E V '.i Ak(zZ) dx (3.14b)

a = d61 f d62 rk(A (i-j)+61-6 2) (3.14c)
o 0

C E (3.14d)

I C - 1 (3.14e)

It should be pointed out that the filtering density .0 is not calculated explicitly

in the recursion above. If for some reason 0 is needed, we can readily calculate the

piecewise constant approximation $(z)=o,, rE l,j, by

! -CI i(r) js(z,z) dz

C ir,, -fI (zz) d C- irk, ju.

C is chosen so that ; will be a normalized density, so

C a- 

-

~~~~~........ .. ...................



19

If we have calculated o, we can modify (3.14b) to save some computation (but with

some loss in accuracy) by substituting for o in (3.11). Since is piecewise constant

on the old grid, we get

- , dx

If we choose to do this, will be normalized, so we can drop (3.14d) and remove C-1

from (3.14e).

3.3. Interpretation as a Probability Mass Filter

It is interesting to note that the recursion described by (3.14) can also be

derived from a rather different point of view. Based on this alternate approach, the

recursion can be interpreted as updating the probability mass associated with each ele-

ment of the grid, as opposed to updating the probability density.

We begin as in section 3.2 by letting y=f (z,u), and assuming that we have a

grid that covers the region of interest in state space. The conditional probability that

xk,, is in 1, is given by

Prob(xE18 ) = ,l Prob(yE I,) Prob(z+iE I. I yE l) (3.15)

The conditioning on the measurements has been omitted from the notation for clarity.

Recalling equations (3.11) and (3.12),

Prob(yc 1,) = ' C' k(x) /,(x,z) dz (3.16)

where lij is the inverse image of Ij as before. Suppose that we have the set of probabili-

ties Prob(zhc I.,) from the last time step. If we make the approximation that the mass

is uniformly distributed within each region, then

7k(z) - I|Prob(zE 1g,.)

Naking this substitution in (3.16) gives

Prob(y- 1) C- Prob(zkE Ik.) u s(x,z) dx (3.17)

SAhe second factor in the sum in (3.15) can be written as

N.. ,? ..'. ; .i.': ."::.'_i." - ' -: -- . ., .' :,-.": '. , ; , " , .• ., -", : . : - ' " . , " ," " -
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dx f dy p(x,, I) p(y)

This time we make the approximation that the mass for y is uniformly distributed over

each region, so p(y) is constant over 1,. This, combined with the definition of r, gives

Prob(zxk , 1,1yE I') d f d y -dl 
T(z-y) (3.18)

Equations (3.15), (3.17), and (3.18) give an approximate recursion for calculating the

probability masses on each interval.

The equivalence between this recursion and (3.14) is obvious given the following

observations:

Prob(xk E i,,) = r ,'

Prob(yEI) = aC - 1

Prob(xE 1.1 yC 1) = r,

Making these substitutions in (3.15), (3.17), and (3.18) produces

X - p(z,z) dz

C A+ IA ' 0, r,_, (3.20)

The constant C is obtained by applying the normalization constraint, which gives

c=E 0'.

The recursion derived in this section (equations (3.20)) is identical to that of

(3.14). We conclude that the recursion can be interpreted either as an update of the

approximate probability density functions, or as an approximate update of the probabil-

ity masses for each region in the grid.

3.4. Implementation

Several aspects of the implementation of the recursion defined by (3.14) need to

be discussed before we consider any specific examples.

.. . . . . ... .. .... - -" " ...........- "...~. , . ... .. . . ,
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As the basic equations stand, there is little to recommend .iemj cornputationally

over any other approach, particularly since they are based on a fairly crude approxirna-

tion, and therefore may require many points to get a given accuracy. The main culprit

is (3.14e) which is a discrete convolution of the two sequences (V,} and Jr,}. Direct

computation of this convolution requires on tile order of N2 operations, where N is the

total number of points in the grid. It is not necessary, however, to compute it directly.

Since it is a linear convolution, we can use transform techniques. Specifically, we can

take the product of the discrete Fourier transforms (DFT) of the sequences, and take

the inverse transform of the result. Using standard FFT techniques, a DFT requires on

the order of Nin(N) operations. Tile FFT approach, then, requires on the order of

(3Nin (N) + N) operations (two forward DFTs, one multiplication, and one inverse DFT).

It does not take a very large N to get substantial savings. We can also use the consider-

able work that has already been done in developing highly efficient FFT algorithms (1291

and 130] are recent examples) to further increase the advantage. Since FFT algorithms

tend to be highly parallel, it is also possible to take advantage of various computer

hardware such as parallel and array processors.

There is potential danger in the FFT approach, though, since the FFT convolu-

tion is circular, and hence may result in aliasing. To avoid this, the grid must be large

enough to completely cover the support of x. We assumed this at the beginning of sec-

tion 3.2, so this requirement does not affect the algorithm directly. But since both {,}

and {r,} are defined on this same grid, the above implies that portions of both sequences

will necessarily be Lero. This in turn indicates there is a certain amount of waste in

both storing and performing computations on the zero elements. It may be advisable to

use dynamic storage techniques to only store the non-zero elements, and customize the

FFT algorithm to take advantage of the fact that only the middle portion of these

sequences is non-zero.

The FFT approach also provides the normalizing constant C given by (3.14d).

In niany cases, this normalization is not really necessary, since we lose no information if

Se choose not to normalize. Dropping C would save computation at a slight cost of

ease in interpreting the results. Some care must be taken to insure that the unnormal-

ized density does not exceed the numerical limits of the computer, though. It is quite

possible for it to go to zero everywhere as far as the computer is concerned. In any

case, we get C automatically, and can then normalize at the cost of only N multiplies.

...................................
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We get C as follows. Let {}be the transform sequence of IV). From the definition of

the DFT,

N

so v=~.Using this in (3.14d) gives C~-aoj'. Since we have calculated the transform

of P, C is readily available. TI'he normalizing constant can be included when the

transform sequences are multiplied together, or ar can be normalized after the inverse

transform, or it can be left unnormalized and C carried along to be used if needed.

Next, note that (3.14b) and (3.14c) require evaluating integrals. Two factors

make this less troublesome than it seems. First, the integrands are a priori given func-

tions, not involving the approximated prediction density. Equation (3.14c) is particu-

larly straight-forward since it is over a single well-defined region. Second, as alluded to

in section 3.3, the integrals can generally be evaluated in terms of the noise distribution

functions. Thus we are trading evaluations of the density function for evaluations of

the distribution function. For the many cases where the distribution function is known

in closed form, this is no additional work. In the cases where the noise characteristics

have been found experimentally, the distribution function is generally more accurately

estimated than the density. In some cases then, this method may actually be easier and

more accurate. If the distribution functions are not available in closed form and numer-

ical integration is used, however, these equations may represent a large computational

burden.

Equation (3.14b) has another nasty feature in addition to the integral. As writ-

ten, it is a convolution which would require on the order of N' operations in addition to

the integrals. In general, this could be true. In practice, the system dynamics will

probably be well-behaved enough that most of the sets Hin I. will be empty for any

given j. Since we only have to sum over the non-empty intersections, this can be a sig-

niificanit reduction. The regularly shaped grid regions lI make it fairly easy to both

dettermlinle which regions will intersect, anid describe the intersection, even though the

iniversec image sets I1, may be strangely shaped.

Specification of the inverse image set defined by (3.14a) can be the most alge-

braically difficult part of implementing this algorithm. H, is usually described by giving

the equations of its sides, each side being the inverse image of a side of the original grid

region. Depending on the form of f, these can be awkward equations. If f is one to
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one, tl, will be a single region. If f is riany to one though, it will likely be several

disconnected regions, and so tire integral in (3.14b) will be the sum of integrals over

those regions. Fortunately, the problems withh specifying 11, typically occur while coding

the algorithm for a particular system, arid are inot a major computational burden when

running it. We will see some examples of calculating t4, and H,r 11, in the applications

sections ahead.

The recursion of (3.14) does not specify how to select the new grid at each time

step, other than to require that it covers tire support of the new prediction density.

The support can be calculated before r itself is as follows. Let S(wk) be the support r,

and S(p) be the support of p. Then the support of .0 is S(o) S(z )n S (p), since 0 is

the product of x and p. The support of 0, S(O), is the smallest region containing the

image of S(0) under the system dynamics function f . Finally, the support of V A1 is

s(,rk.+,) = {zy+z ; yE S(V), zE S(T)}

The grid can then be chosen in any convenient way, as long as it completely covers

S(xkJ,). It is worth pointing out that the grids at each time may be completely

independent, even to containing different numbers of points.

Note that the preceding depends on the assumption made earlier that the noise

densities have finite support. There are a number of commonly used noise densities

which have infinite support. In those cases it is necessary to truncate the densities at

some point to achieve finite support. Done judiciously, this truncation will have negligi-

ble effect.

To initialize the recursion, we need to specify an initial grid and prediction den-

sity approximation. The initial grid is chosen to cover the support of the given initial

prediction density. The density approximation is then io(z)=i 0,, zE 10,,,

X0., - - O(z) dz, where %0 (z) is the initial prediction density.

The last point to be discussed is the selection of the number of grid points along

each axis of the grid system. This number must be large enough to provide sufficient

accuracy of the approximations, but should be as small as possible to minimize the com-

putational burden. There may also be some restrictions on the number of grid points

due to the FFT algorithm chosen, although these are usually minor. Unfortunately,

there are no firm guidelines to help here. Probably the best approach is to start with a

small number and increase it until you get reasonable accuracy for the particular

- . -. . . . . . ..... .-. -. ., . . . . . .. . ... , ... . ... . .. ... . .: .: . . .- , . . . . . .: .? -...,
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application. As we will see in the numerical examples in chapter 4, we can get surpris-

ingly good results with relatively few points.

3.5. Analysis of Error Propagation

For classical point estimation techniques the major concern is whether the point

estimate converges to the true value, and if so, how fast. here, since we are actually

calculating an approximation to the posterior density, the question is instead whether

the density approximation diverges from the true density. In other words, we are con-

cerned with bounding the maximum growth of the error instead of finding the minimum

shrinkage.

We turn now to characterizing the error that accumulates in the prediction

density approximation as we execute the recursion (3.14). As we will show, there is an

upper bound on the growth of the error from step to step. This bound is the best possi-

ble, in the sense that there are pathological situations in which the bouiid is achieved.

It is not, however, what one would call reassuringly tight, since it allows fairly rapid

error growth. Fortunately, in deriving the bound we are also able to characterize the

situations which lead to large error growth, so that we can say that generally the error

growth will be much less than its bound.

For this section we will make two simplifying assumptions to help decrease the

notational clutter. All the conclusions also apply in the general case. First, we restrict

our attention to the scalar case. Among other things, this allows us to use the represen-

tation z=a(i+6)+,6, 6E (-,), for zE 1j, where the scalars a and fi define the current grid.

Second, we assume the system dynamics function f is invertible. With this assumption,

we can write

where (y) -I df '(y)/dy I. Note that 0 is not normalized, so that it corresponds to the

earlier derivation.

We begin by assuming that we have ik(x), the prediction density approxima-

tion at time k. The error is ir-a -n7, and in practice is unknown since we would not

know ;. Note, however, that

. (z) d, f x) dz f i'(x) dx I - 1 0

Hence, we do know that i oscillates about zero, since its average over its support is

,..
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zero. Let i be bounded by ik(z) <, ,,(

Now consider i. It is approximated by (y)-w,, yE I,, ', defined by (3.14b).

For y 1) we get

'Pt) Oy) (- (, + U-)(f- U))(f (),)g(Y) ,

- - U('(z))g(y'()),z)g( )

+ 2(f-(Y))A-(y),zg(y) - ", ,
0

Define

,P,(Y) i(U-(y))AlU'(),-)g(Y) - (f (y));(f (y),z)(y)dy (3.22)

The term ', is the 'carryover' error. It is the error in from using the density approxi-

mnation i instead of the actual density x. From the assumed bound on i, we get

I ('y)I = Ii  ; 9 <- .& )F k A g = ,,( ( ) (3.23)

The other term, ',., is the 'approximation' error. It is the error which would result

from approximating p by if ie were the true density. This error is (conceptually at

least) calculable, since i and I are known. Suppose, then, that

()l to. O ) (3.24)

Since we are approximating with a piecewise constant function, we expect that will be

a worse approximation (t . will be greater) as 'P becomes steeper.

It is worth emphasizing that 0, and V,. arise from distinct sources. If X2=ih,

so that we had no error in the last prediction density, p. would be zero, but 0, would

be unaffected. Likewise, , is unaffected by the quality of the approximation of V as

reflected by o. Two other features of these error terms should be noted: first,

f,.(y)dy-O, and second, even though fi(z)dz 0, it is very likely that f ,(y}dy 0.

Hence, p. locally averages to zero, while W, is not guaranteed to average to zero even

over its entire support.

Next, substitute tk +-t4, in the convolution for xktI. We get

- -.~~~~~~~~~~~~~~~..........+.. .....-..-...................... ............ ...'.-..............''......,-.- ,-,,' .--+-..-...........--.
_ "-" "" " :-- d,., ---.d

-
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C-1 ~i ~dy-t f0. y)- (z y)dy (Y) (z--y dy (3.25)

Note the integral in the first term above. Its piecewise constant approximation for rE 1,

is r, given by (3.14c). Therefore define

f,. 6) f r((o(i b)-/I)-y) dy - r,_-

As with o, this error is calculable since r is a known function. Accordingly, assume

i.,-(6)I < c, fr((Q(i-t6)±fi)- y) dy

Notice that fP,(6)d6-O, so i also locally averages to zero. Substituting the above into

(3.25) yields

','()=C E "- + Eojio.,(6) -s .(YrXY

+ f k(Y)r(z-Y)dy (3.26)

The normalizing constant C is obtained by solving fx (z)dz=1, which results in

C- fd -t Ev',i,)(6) ±f Po(Y)r(x-y)dy + ()-XYd

- a ( x fi,(x) IA(x,z) dx (3.27)

where we have used the fact that f and integrate to zero. Refer back to equations

(3.14d) and (3.14e). If we let C be defined by (3.14d) and substitute this and equation

(3.14e) into (3.26) and (3.27), we get

C ( +f ij(z) u(zxz) dx

From this it is obvious that the error functions are

IA
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f j f,(') ,(z,z) dr (3.28)

7i CI zl-) -t C f.AJI.~ J,a(yjT~z y

P, (y),-(r y) dy (3.29)

We will examine each term in turn.

First consider 4& from (3.28). Using the assumed bound on i. we get

I fli z, (xzz)dz <.f w)Ait(zz)dz= f .f0()dy =,,&C

The bound on this error is only attained in the unlikely event that A is concentrated on

a set where i k attains one of its extremes. At the other extreme, if p is constant over

the support of ik, 4&=O, since fikdx:O. Generally, we would expect C to be small

when p is spread out, while a more concentrated p would increase the likelihood of a

larger error.

The first term of (3.29) is the normalization error in x" due to the error in the

normalizing constant d. If 5 is small, this term will likewise be small. In any case, this

is a fairly benign error, since it is a simple scaling error and affects all the intervals

equally.

Next consider the second term of (3.29). Using the assumed bounds on i, 4',

and ,, this term can be bounded by

" [~~ i,,,(6)j €, J f" r((a(ii-)+fi)--y) dy
J 2

The first inequality is achieved only if I reaches a maximum at the saine 6 for all i;

otherwise, the error is strictly less than its bound. The second inequality depends on

the behavior of the convolution of , and , with r, and will be discussed when we get

to the third and fourth terms of the error equation. Note that this term is analogous to

,. It is the error which would result from approximating x with e if were the true

density ( t: ). Hence we would expect it to depend on how steep r is. We can investi-

gate this further by making the rough approximation that fr(z-y)du=r,_3 at z=ai+#,

. . .. .
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and is linear between. This implies

A (, 2)

Using this approximation gives

So, roughly speaking, this term depends directly on the rate of change of 7F (and hence

), as we would intuitively expect.

Now look at the third term. This is the propagation of the approximation error

in b through the time update convolution. With the bound on €,o from (3.24), we have

I fP.(Y)'iZ)-)dIl < ,fil(u)'(Z-Y)dy =

Recall that .o(y)dvy-0. Hence if r is reasonably constant over intervals of length a,

then this term will be near zero. Another way to look at this is to recognize that the

convolution is an averaging operation. Since o locally averages to zero, we would

expect the convolution to be near zero as long as r is locally nearly constant.

Lastly, consider the fourth term of (3.29). This term results from the propaga-

tion through the current cycle of the recursion of the error in the prediction density

from the previous time step. Using the assumed bound on the previous prediction den-

sity error ik, and the same steps as in the above paragraph, we obtain

I f 0,lly)r("-y/ldyl ! P iX,{./-(I))l U,(f-'(Y)'-)9(V)r(X-Y)dy

< (,,.,f r,(f -'(y,))/.(f -'( ),z)g(y/)r(x - )dy .,,Cx,,-..(.r)

The behavior of this term is much the same as the last, except that we require the pro-

duct 0gr to be reasonably constant over the whole support of ;rs, instead of just locally.

This is because we can only assert that the entire integral of ik is zero, rather than the

stronger statement that the integral over intervals of the grid is zero. Clearly, this is

irore difficult requirenwrnt to meet. Even so, if a and r are not excessively concen-

trated, we can expect this term to be significantly less than its bound. This behavior is

important, since it implies that we can expect past errors to be forgotten to some

extent. This in turn indicates there is a possibility of reaching a steady state error level,

where the error introduced at each iteration is roughly balanced by the attenuation of

past errors.

k...................................................

----------------------------------------------------
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The total error bound is obtained by combining all the bounds for tile iundivi-

dual terms in (3.29). This produces

Thus, the growth of the error for each iteration is bounded in this sense. LUfortunately,

this is not a particularly restrictive bound. For exaiple, a relatively sniall 5% error in

each of tile constituent teris allows nearly 22% error for the total.

Tile above covers the behavior of the error in tile density approximation. In

light of tile interpretation of the recursion as a mass filter, it is also useful to consider

the behavior of the error in the mass assigned to each interval. Let

P, = Prob(xj , IL 1, 1 Zk). Then

f I 
1
j(z) dx

01
Tile approximate probability P. generated by the algorithm is given by

./, xkj(z) dx - ,-,w k,I,,

Hence the error is

% , _. p- P f(,,( - nk, (x)) dx 'i,,(x) dx

Using (3.29) to substitute for ik, 1 for ze 1,, we get

-+_$(cii"Ad -'

Sf ,(yl)rlz syldy 1dx (3.30)

Thc iit egral of course distributes over the sumn. The first term is simply a constant

tiries P, The second term is zero since the integral over any interval of i, , is zero.

'I'he third term can be bounded by

I fd.xfdyi.(y),(x-y)I ('0 fdfd()7(z- y)

p_-.

.
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Similarly, the fourth term is bounded by

d- f xdy ,(y), (Z- Y)! ., C]',

Hence the total error in the approximation to the probability mass is bounded by

Note that this bound dep.nds on the error in the density approximation from the previ-

ous step. Hence, although the error in the mass approximation is less than the error in

the density approximation at each step, it can grow as rapidly.

In addition to the errors in the density and mass approximations, we may also

be concerned with the error in the ultimate decision from using the approximate density

instead of the true density. In general, the decision will depend on the expected value

V of some cost functional v. Following the approach used above, we see immediately

that the error in using the approximation to V is given by

V f iW,,(Z) v(z) dx

If v > 0, the error can be bounded by

I ;i f I iSj(Z)j v(x) dx <, E, f wt~i(x) v(z) dx c, V

where t, is the bound for the error in the current density approximation. Recall though

that fih+(z)dx=0, so if the cost functional is not overly concentrated, we can expect

the error to be significantly less than the bound. Clearly if v happens to be concen-

trated in the wrong places, then the error could approach the bound, but this would be

unlikely. Once again we arrive at the intuitively reasonable characterization that the

errors will be aggravated by sharply spiked functions. If v takes on both positive and

negative values, we cannot bound the error in this way.

As we have seen, the error bound for the recursion can grow at an uncomfort-

able rate. Fortunately, the conditions when the errors reach their bounds are fairly

unusual. In general terms, as long as the densities remain reasonably evenly spread out,

the errors should be substantially below the bounds. This matches with our intuitive

expectation, since the piecewise constant approximations that are being used are best

-... , -,....~~ ~~......................................,.............,..-. ..-............. ... ..... .... .. ,-.
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when the densities are reasonably flat in the scale of the grid. This in turn implies that
we can reduce the error by increasing the number of grid points. In fact, the piecewise
constant approximations converge uniformly for the class of continuous densities as
N ac. so the recursion would be exact for densities in that class. We can still use this
technique for discontinuous densities, but we cannot guarantee convergence as N
increases.

In the next chapter we will look at a number of numerical examples to show the
typical error behavior of this algorithm.

6



4. NUMERICAL EXAMPLES OF THE ALGORITHM

4.1. The Linear Gaussian Case

In this chapter we consider some examples of tile algorithm in use. The first is

the linear Gaussian case. This case is important as a benchmark since, as we pointed

out earlier, the Kalman filter is its Bayes' solution. Hence we can compare the approxi-

mate solution provided by the algorithm with the exact analytical solution. As we will

see, the algorithm performs quite well.

Implementing the recursion of (3.14) for a scalar system with linear dynamics is

very straightforward. To begin, we will use a time invariant system. The model is

ZA+i = FZk + Wk

zA = HxA + vk

where WA and vk are zero-mean Gaussian with covariances Q and R respectively. Hence

i(zz) (21R) e, (-
2R

T(x) (2. Q) exp(-
2Q

Since the algorithir demands that j and r have finite support, we truncate the Gaus-

sian densities at plus and minus three standard deviations. The approximation grid is

simply a collection of intervals on the real line, defined by the two scalars ak and 6k.

With this information, we can now implement the equations in (3.14). The inverse

image sets 11, (equation (3.14a)) are single intervals, given by

((a, di--)-+/',(akds- +)f+l)/F). It is a simple matter to calculate the intervals in

the old grid that contain th endpoints of each 11,, and from that identify the non-

empty intersections in equation (3.14b). Generally, only two or three intervals in the

oht grid are involved. The remaining equations are implemented directly, and do not

require further discussion.

As discussed in tile previous F: n, we are most concerned with tile possibility

that the accuracy of the density approximation may degrade as time progresses. We

can begin by visually comparing the approximate density with the exact density

obtained from the Kalnan filter. Since we are going to look at the density after

32
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considerable t ine has passed. we will use F'-I so that the system has reasonable long-

term behavior. Figures 4.1-3 slow the comparison after 500 iterations for a 32 point

grid and three combinations of noise covariances. Visually, at least, the approximate

densit. is a good representation of the actual density. Reviewing the density comparis-

ons over the complete history reveals thai the approximation maintains nearly the same

degree of fidelity throughout. This tends to support the observation from the previous

section that the error may reach a steady state condition instead of constantly increas-

ing.

Visually, the approximation seems stable, but what can we say numerically?

The obvious choice of error to calculate is the ratio error bound defined in the previous

chapter. Unfortunately, calculation of that error measure is complicated by the pres-

ence of two additional sources of error: first, the error introduced by the finite word

length FFT, and second, the error resulting form the truncation of the Gaussian densi-

ties. Both these contributions are of the same magnitude as the density itself near the

tails. This can result in arbitrarily large error ratios as one moves away from the

center. Thus, tile error criterion of the last section tends to give inflated results. Res-

tricting attention to the central intervals minimizes these contributions but is not

rigorously justifiable. Even so, it can provide information on the general trends of the

error, so we will use the ratio error restricted to the interval ± .Sa about the mean of

tile actual density. In other words,

RatioError max ir W -i'L
-I'M I< o 0 (z )

where p and a are those of the actual density. Figures 4.4-6 show this measure versus

time for the same situations as above, averaged over 20 runs. Note that the error

remains more or less constant over the entire run. This again supports the proposition

that the algorithm achieves a steady state error. Another useful numerical comparison

is between the moments of the approximate density and those of the true density. Fig-

ures .1.4-6 also show the averaged error in the first two central moments. The error in

"the nian is given in percent of the actual standard deviation. The error in the variance

is in percent of the actual variance. Once again, the errors are seen to be reasonably

constant.

flow do these results depend on tile particular parameters used for these first

examples? There are four different parameters to consider: the system dynamic

. . ..
... . . ...-. .. . . . . . . . .
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34

00
LOt

-4

C V) 
kn

tn

01 0

1OTX A4TSUaWJ UOTIIDPa~d

Figure 4.1 -Actual versus approximate density for linear time
invariant system with Gaussian noise, after 500 time steps.



35

00
00

aC

0&

4-J

0

CnCiC

0 i 0

OTT 9* 00T 940 OcTO 9*O 00*0

I OTX XSSUOQ U0143IPald

Figure 4.2 - Actual versus apprixima.e density for linear time
invariant System with Gaussian noise, after 500 time steps.



-36

Cr,

0Mo00

"LO

COO

0
E- COi -r

..

~~CO O.

c

~44J

oc6 IIn
Cg0

00

O~ ~ 0.-- OO ~ 000

..................... ........... . .

.... .... .... .. .. ......... . .. . .. . .. . .

• £ II .....-. .....

- - I-

-: II I

09'T I;z'T 00'T 19L'0 09;'0 GZ'O 00"0

i Figure 4.3 - Actual versus approximate density for linear time

invariant system with Gaussian noise, after 500 time steps.



. .- - - , . . ., . .. b. IL ,' ,* .L- N .' * -- ,, w , ,r _ . 'r.-k/
37

c C5
C4

0

co'

, ,c

00

II ] I

0

00

* 
0

C) C

--

0 0

0' 0lt 0-C 0 0 1 0-6 01- 0'z- OtC-

Figure 4.4 - Average error history of approximate density for
linear time invariant Gaussian system.



38

0

00

0

00

o

II I

00

000

0 CV

DII ,0

00

~~co

,.II II0I"

.- 0 0 00

I"I - 0

"- Figure 4.5 - Average error history of approximate density for
linear time invariant Gaussian system.

". "" "b" ' '" " "' " " ' "" '6'" '' '' =< ' '" " " ' " ' "



39

0

C\2)

0 0

4

c
0

0

'-4 0-

II -0

00

-0

-Ii II -I

Figure 4.6 - Average error history of approximate density for
linear time invariant Gaussian system.

.......................................................
*.* * . . . . .. . . . . . . . . . . . . . . . . . . . . . .



40

col stalnt F. the noise variances. the numiber of grid points, aiid the point at which the

Gaussialn deisities are truncated. The first two are paranieters of the systremn, and the

setoIid two are paraneters of the approximation algorithn. We will use tle time-

averaged imean alid variance of the nunierical error rieasures defined above to look at

the effects thiese parameters have. Table 4.1 sunimnarizes the results of the various cases

to be considered.

Look first at changing the system constant F. Figures 4.7-9 show the resulting

density approximations after 20 time steps for three different cases: stable, unstable,

arid oscillatory systems. We would expect these changes to have little effect on the per-

formance of the algorithm, and the figures and the data from Table 4.1 bear this out.

The variations in the error statistics are very small.

Next consider different system noise variances. Figures 4.1-3 showed three

situations different only in the noise variances, and visually there was little difference.

However, looking at the numerical data in Table 4.1, we notice a pronounced change as

the ratio of system input noise variance to observation noise variance changes. Note,

though, that it is the ratio that is important, not the individual magnitudes. The

statistics for the base case (Q=2, R 4, so -SI=0.5) are virtually identical to those for

Q 6, R - 12 (-5 again). As the ratio of the variances gets smaller, the errors

increase in all categories. This is because, as the ratio gets larger, the data in the

current measurement is weighted more relative to the data in the old prediction density.

This effectively reduces the dependence on the past data, and hence reduces the carry-

over of old errors. In terms of the densities, the smaller the ratio becomes, the more

sharply spiked u (and hence V) becomes compared to r. Thus i, the result of the con-

volution of r^ and V, looks increasingly like a shifted version of f, with only the error

associated with approximation of r and no carryover from past iterations. So the algo-

rithrn performance (oes depend to somie degree orl the system parameters, but in a

predi( table arid reasonable way.

W e turn now to varying the algorithmn parameters. Figures 4.10-12 show the

density approxinations for 8, 12, arid 16 grid points. As we would expect, the fidelity

of the approximation improves as we increase the number of grid points. Similarly, the

data in Table 4.1 shows decreasing errors as the number of grid points increases.

Interestingly, even with as few as 8 points, we get a fair representation of the density.

-............ .
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Error in Error in Maximum

Case Mean (%) Variance(%) Ratio Error (%)

Mean Var Mean Var Mean Var

Base -. 116 .9 3.71 5.58 43.5 25.9

F-1.2 .0213 8.22 3.60 5.12 42.7 18.6

F-0.9 -.0576 7.60 3.45 4.58 42.8 21.7

F=- 1.0 -.0240 7.23 3.88 3.70 43.6 24.5

Q=6, R=2 -.0236 .735 1.31 .413 31.9 3.27

Q=6, R':6 .0436 3.37 2.39 2.51 37.5 9.98

Q=6, R=12 -. 115 8.94 3.71 5.57 43.5 26.3

N=8 -.644 792 111 108 2.66e+3 1.05e+7

N=16 -.293 74.4 20.8 13.0 149 1.73e+3

N=64 -.0589 2.73 -.897 5.09 17.0 5.16

± 4a truncation -.0361 12.0 8.95 .788 66.8 88.23

± 2.5a truncation -8.42e-3 19.6 -1.74 21.8 32.8 30.3

System: zA. Fxk - wt ; zk=zvk ; wk Gaussian (0,Q), vk Gaussian (0,R)

Base case: F 1, Q 2.0, R=4.0, Gaussians truncated at ± 3.Oa,

N=32 grid points

Average over 1000 time steps

Table 4.1 - Summary of Errors in Approximate Density as Parameters are Varied

Despite the rather large ratio errors for that case, the moments are the approximate

density are not too far off. The average error in the mean is less than 1% and 95% of

the time the approximate mean is within .56a of the actual (based on a Gaussian error

distribution and a 2a bound). It is also worth noting that we begin to get decreasing

. .*. . . .. . . . . . . . . . . ..-.....-. .. -. * .. ..".. .'. ".".... -. .... " .-... .. . . . ..-'. .%'.'. " - .' -,-.-' - .-.. ". ...- ".-'. .' - -,-
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returns as we go from 16 to 32 and then to 64 grid points. This points out the irnpor-

tance of balancing desire for numerical accuracy and computational burden. In practice,

it may be necessary to experiment at the beginning to select a reasonable number of

grid points for the particular application.

Finally, look at changing the truncation point for the Gaussian densities. Fig-

ure 4.13 shows the resulting approximate density when the Gaussians are truncated at

:t 4a , and Figure 4.14 shows the result for ± 2.5a. Visually, there appears to be little

difference. Numerically, however, we note a degradation for both cases in comparison to

the base case. As we increase the truncation point, we include only tiny additional pro-

bability mass, but force the grid to cover a larger interval with the same number of

points. As a result, the densities appear more sharply peaked, and so, as predicted by

the error analysis of the previous chapter, the ratio error increases, as well as the errors

in the mean and variance. On the other hand, reducing the truncation point discards

an increasingly significant amount of mass, even though it improves the grid coverage in

the central region of the density. This causes the observed reduction in ratio error with

increased variability of the moment errors. The increased variance of the moment

errors for the 2.5a cutoff also occurs because reducing the truncation point aggravates a

problem that any truncation of a infinite density can generate. As you can see in Fig-

ure 4.14, the approximate density for this case has a fairly obvious skew to the right

relative to the actual density. This is caused by a noise sample near the truncation

point. The multiplication for the measurement update will now emphasize the region

near the truncation, resulting in a distortion on one side of the density. The more

severely the density is truncated, the worse the problem will be. Care must be taken in

selecting the truncation point for a particular application, and, as with selection of the

number of grid points, some experimentation may be required.

Two more features of the algorithm are worth noting. First, the error in the

variance appears to have a definite positive bias. In fact, from looking at the average of

the absolute value of the error, it seemis that the variance of the approximate density is

almost always greater than the actual variance for most cases. In other words, the

approximate density almost always overestimates the variance. This is intuitively rea-

sonable when you consider the form of the approximation. Over any interval, the

approximation is usually greater than the actual density on the side away from the

mean, and smaller on the side closer to the mean. Hence the approximation will show a
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greater spread than the actual. For the mean, however, the differences will tend to bal-

ance each other, so we do not see a bias in the mean of the approximate density. This

is a very nice property, since it says that tie algorithm generates a consistently conser-

vative approximation to the actual density. The two exceptions to this general observa-

tion are the cases for N=64 and truncation at ji 2.5a. In both cases the effect of lost

11iash beyond the truncation point cancels the effect described above.

Second, you may have noted from the graphs that the interval which is the

peak of the approximate density often contains the peak of the actual density. In the

runs made to generate the data in Table 4.1, this occurred about 95 percent of the time,

consistently for all cases. This effect is related to the interpretation of the algorithm as

a probability mass filter. The algorithm almost always assigns greatest mass to the

appropriate interval.

To close this section, let's now relax the time-invariant restriction. Figure 4.15

shows the density comparison for a system with Gaussian noises with time-varying vari-

ances given by

Q 0 + i,(-2r k Rk - R0 + sin('2" k
Qk13 9

As you can see, the algorithm handles this case without any difficulty. Numerically, the

errors are comparable to the base time-invariant case.

4.2. Sign-only Observations

We have seen in the last section that the approximate algorithm generates a

well-behaved, stable approximation to the actual prediction density. There is little use

in continued application of the algorithm to the linear Gaussian case of the last section

though, because we already have an exact solution for that case. More interesting is to

look at nonlinear non-Gaussian systems, and use the algorithm to explore their

behavior. For example, having a representation of the complete posterior density allows

us to actually calculate the optimal estimate for any given cost function. Thus we can

compare the performance of any approximate point estimator to the theoretical

optinium. Alternatively, we can use the algorithm to look at the effects of different sys-
ter structures on the information in the observations. Many applications are possible.

As a simple illustrative example, consider a system with linear dynamics and

Gaussian input noise, but where we observe only the sign of the output. The system is

. ..°
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described by

ri +I -Fzk -+ wj

zk sgn(zk -t vk)

where sganz) is the sign function defined by

sgnl(Z) I< 0

It is interesting to note that although this is a simple nonlinearity, there is no EKF for

this system, since we cannot linearize the sgn function.

It is a simple modification to apply the algorithm to the above system, since the

algorithm is nicely modular. The only change in the system is in the observation equa-

tion, so the only change in the algorithm is in the measurement density p. For this case

we have

A(r,z) c1(Z)6(Z- 1) + c 1 ,(z)6(z-t I)

where 6 is the Dirac delta or 'impulse' function, arid c, and e- are given by

00

c I (z) = Prob(z-+ v) 0) =f (2 R) 2 exp( -) dy
-2 2

c -,(x) Prob(z--v<0) f (2v R) 2exp(----) dy - -c 1 (x)
-00

Other than this, the algorithm is implemented exactly as it was for the first section.

Also as in the first section, we will use a 32-interval grid, and truncate the Gaussians at
"" ± 30.

One thing that would be nice to know for this system is how much we lose only

having the sign for the observation. Or conversely, how much could we gain if we had

full observations (sign plus magnitude). To at least start to answer this question, we

can compare the approximate predictioii density for the sign-only system to the output

from a Kalman filter operating on the full measurements. After a little experimenting

with the system it becomes apparent that there are two basic regimes to consider.

First, where the state remains in the vicinity of zero, and second, where it does not. In

the first case, we get reasonably frequent switches in the sign of the output. As might

be expected, this leads to a roughly Gaussian shaped density. Figure 4.16 shows such a

• .. . . .. .. ~~ ~ ~~. . ....-.-.-.... ---.........-..-..... '. -'-.....-... -.......-......... '
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situation. Note that tile means of the two densities are quite close. The denisity for the

sign only case, however, has a noticeabl) larger variance, indicating thle reduced infor-

mation content of the sign-only observations. In the second case, where the state drifts

away fron zero. the observations are consistently the same sign. Now we know only

which side of zero the state is ol, but not how far away it, is. We would expect, then,

that the density would begin to smear out, displaying a large degree of uncertainty

about the state. Figure 4.17 shows tile two densities for this case. Again, tile means of

the two densities are not grossly different, but the variance of the sign-only density is

considerably larger. The sign-only density is also clearly skewed away from zero, show-

ing the larger degree of uncertainty in that direction.

Looking at the time history of the density gives additional information. For

simplicity, we will just consider the mean of the two densities, since these provide a rea-

sonable measure of the relative locations of the densities. Figure 4.18 shows this for the

* same system parameters as in Figure 4.16. Note the extreme response of the sign-only

density to changes in the sign of the observation. As noted before, this is because the

data does not contain information on how far the state has moved. The latter half of

the graph shows the effect of the sign-only density spreading out in the positve direc-

tion.

At this point we can make some general observations. First, even at best, any

state estimate based only on the sign of the output will have poor performance com-

pared to having full observations. Second, a sign-only estimator will perform best when

the state is near zero so that there frequent changes in the sign of the data. These are

hardly surprising, and might even be intuitively obvious, but the above is the only rea-

sonable way to actually demonstrate them.

We could continue by extracting numerical data, and quantifying the behavior

of this system, but since this example is only intended to demonstrate the application of

the approxinfate density algorithm, we will not. It is sufficient to point out that ana-

lyses of this type can only be accomplished by calculating the complete posterior den-

sity, and that this algorithm provides a powerful means of doing so.

• ,~~~~~~................-i:-: .i-i.: , , . .........."--: ........ ....... ,............. ......... ,.............,...
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5. APPLICATION TO PARAMETER IDENTIFICATION

5.1. Introduction

Well, what good does this algorithm do us? The answer to that is highly prob-

lem dependent. Clearly, for many combinations of systems and objective functions, the

traditional point estimators provide an acceptable answer. Furthermore, since this tech-

nique can be fairly expensive computationally, even a poor point estimator may be

better for some applications. Rather than futilely try to find gross generalizations,

probably the best approach is to identify particular applications, and explore them

using this technique.

We can describe, however, several general ways that the algorithm can be of use

to us. First, simply working with the equations and thinking of the process in terms of

operations on densities provides a deeper understanding of the mechanics of the process.

For more detail, we can use the close approximation of the posterior density that the

algorithm generates to plot the prediction density or develop other useful descriptions of

it. This can provide additional insight into the behavior of the system, and would be

useful in much the same way as traditional simulation is for deterministic systems.

Furthermore, as is done with deterministic simulation, we can use the technique to

examine how the behavior of the system varies as we change features of the system.

Finally, again since we have a representation of the posterior density, we can actually

calculate the optimal estimator for any given loss function. Thus we can compare the

performance of traditional point estimators directly to that of the optimal. In this way

we can judge, for instance, whether apparently poor performance is a fault in the esti-

mator, or is actually just the best that one can expect. This could be particularly useful

in assessing transient performance, where there are virtually no theoretical results. To

consider these uses in a concrete situation, we will look at them in the context of the

problem of simultaneous state and parameter estimation. We will look first at using

this approach to analyze the propagation of the prediction density, and then we will use

it to evaluate the performance of a point estimiator.

What is the parameter estinmation (or system identification) problem? It is

where we know (or assume we know) the system model except for a finite number of

parameters. The object is to be able to estimate both the system state and the system

58
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parameters using the observations. Generally, the system can be nonlinear, and the

parameters time varying. In practice, however, virtually all the work has been done for

linear systems with time-invariant parameters. For that case, it has been possible to

take advantage of the linear structure of the system to obtain reasonably effective point

estimators. A large body of work exists concerning these estimators, which we will not

tr) to review here. These approaches generally arise from considering the states and

parameters as distinctly different entities. On reflection, though, there is actually little

to distinguish the unknown parameters from the unknown states of the system. When

we recall the Bayesian definition of randomness, we see there is really no distinction at

all. From the Bayesian viewpoint, the unknown parameters are simply additional sys-

tent states in a nonlinear system model. As Peterka 131 and Ljung 138) have pointed

out, this is the only logically consistent approach. With this view of the problem, it is

traightforward (although possibly algebraically involved) to apply the algorithm to the

parameter identification problem.

5.2. Applying the Algorithm

For our first analysis, we will consider a scalar linear identification problem,

where we have a model with linear dynamics with an uncertain transition parameter.

The model is

zk I = Fzk + uk + wA

ZA; X + VA

where the transition parameter F is unknown, and where u& is a known input sequence

and wk and vA are uncorrelated, white, zero-mean, Gaussian noise sequences with vari-

ances Q and R respectively. The equivalent nonlinear vector system that we will use is

given by'

- I 2),k -t I] z(,)Z(2),:+ Uk] [', -Wk f

". = Z(2)k + VA h(zk , VA)

where uk, wt and vA are as above. We are now in a position to apply the algorithm

1. Recall that the notation z(,) refers to the ith component of the vector x.

.. "

. . . . . . . . . . ..o
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developed in this paper.

First, we must define the grid. For simplicity, we will use a rectangular grid,

defined by the cells

{ z () ( I a2,,(J(t-1 b 2,, , a(IA(2 )I b(2),A

so in the definition given in chapter 3, the matrix A will be diagonal. The volume of

each cell is therefore given by aka(),*a(2),A. At each time step, we will define the new

grid based on the smallest rectangle containing the support of the new prediction den-

sity. Note that since there is no noise on 1 (j) and no direct observation of that state,

the support of the density along that dimension will not change. Hence, it will remain

the same as the support of the initial density, and the grid parameters in that dimen-

sion will be constant.

Now consider each of the equations of the recursion (3.14) in turn. First is

equation (3.14a), which is the computation of the inverse image of a grid cell. Since the

mapping given by f above is one-to-one, thc inverse image is a closed figure like the ori-

ginal cell, bounded by the inverse images of the sides of the original cell. The inverse

image set is given by

a(2) +'(J ( 2)- -I b() - u a(1)±-+ilj() -l- " -b(2)'k' ' u l

X(2)Cl 2I
z(,} (1)

Figure 5.1 shows a typical H, in relation to the grid at the previous time step.

Next look at equation (3.14b). Recalling that j =p(zk I x), we get

2' {z -(2))2

,s(x,zk) - (2,r R) 2exp(- -z(2)
2R

Now consider the limits on the integral of A. Referring to figure 5.1, it is clear that

since the grid in the x(j) direction does not change over time, we have Hin 1h,= 0 if

3(,)1,. If j)=i(j), we have

H~n 1,, {z)E..=~ 2a,. d ,- +b,. 1 a,. 1 ,+) h,. ,
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Figure 5.1 - Typical Hi in relation to old grid.

a (2)+((2f)±) b( 2)k +-uk a (2)kt*IU(2) +b(2)k+I- Uk

= Z()E IZ(,),~ ( .j) ; () kz,):

Calculating the limits for i(2) over which the intersection is non-empty is straightfor-

ward. Given those limits, (11,12), equation (3.14b) becomes

I) a(I),kt10 (2).k-P i 27 k400). 2

~2(3l''~ (2~ R)(Z&- Z(2)) (.1

dal,) x2 xR 2exp(- - (5R1

The inner integral above can be rewritten as
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G(zk- ix(z ),ij),R) - G(2k- 2 (2l(),tj),R)

where G(z,R) is the cumulative distribution function for a Gaussian with mean zero

and variance R. We now have

G() (2 A +) ((21
3

2 (',1)

- G(zk- 2((z(,i,j),R)) (5.2)

Now consider equation (3.14c). The system time update density r is given by

1 2rk(z) -(cl i z2

where 6(z) is the Dirac delta or 'impulse' function. Hence we obtain

2 2

ri a (i),ks-IG(2),k+1 f' de(1 )1 f di (1).2 6(a(I),k+I(i(l)),-t- f (1),2)

! 12 2

• ~f dt (),1 f de (2).2 (2, Q)-2exp(- (a'"'i'+2" '")2

I I
2 2

d~~~~ ~~ a2,z dE2 , 2 )- a2,+(2),-t 1(2)- +( 12) 2
a (1,k,,a(2), .+b f dt, f d(2aQ) 2exp( 2Q (5.3)

2 2

where 6, is the Kroneker delta. As with the equation for b, the above can be rewritten

in simpler form in terms of the cumulative distribution function. The equations are now

detailed enough to implement in a computer program.

5.3. Analysis of Density Behavior

The first step in analyzing the density behavior is to develop the specific reali-

zations of the equations in the recursion for the problem at hand, as we did in the last

section. In doing this, we are forced to begin thinking of the process in terms of opera-

tions on entire densities, instead of on scalars, as we might in other schemes. As we do,

we often gain a deeper understanding of the mechanics of the density propagation just

by visualizing the general behavior. In doing so, it is useful to think in terms of three

. . . .. .* . .
-
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basic operations: first, the multiplication of the old prediction density and the measure-

ment update that yields the filtering density 0; second, the nonlinear transformation

due to the system dynamnics that gives the intermrediate density 1p; and third, the linear

convolution of vp and the input noise density that gives the new prediction density. The

first operation tends to trimn the density, the second skews it, and the third smears it

out again. Let's look at these operations in the context of this problem. The first thing

to note is that the measurement density is independent of the parameter zti). In other

words, the density looks like a ridge running parallel to the x(,) axis. For convenience,

imagine that the prior density is completely uniform over the grid area. The result of

the multiplication operation then would be a duplication of the measurement density, a

ridge parallel to the xzi axis. The second operation rearranges the density according to

the system dynamics. In this case, we map the density at a point (a,b) to the point

(a,ab). This results in the ridge line of the density running along a straight line through

(0,0). The spread of the density in the Z( 2) direction is also affected, going to zero

toward z(,)=o and increasing with increasing x(i). Next, the convolution spreads the

density out along the Z(2 ) direction. The result is a somewhat wedge-shaped ridge run-

ning at an angle to both axes. Now when we process the next measurement, we again

multiply by a ridge parallel to the x(j) axis. It is easy to visualize this and see that the

result is a hump shaped density roughly at the intersection of the two original ridges.

As the process is repeated, we see that the density will converge in both dimensions.

At this point, it is worth digressing to discuss what we mean by convergence of

the density. As we discussed earlier, the density function is interpreted as a measure of

the information that we have about some st~te of nature. The more spread out the

density, the less precise our knowledge. Conversely, the more sharply peaked the den-

sity is, the more sure we are. Hence we are interested not only in the location of the

density but also in its shape; we want it to become increasingly peaked as we process

measurements.

This type of intuitive analysis can provide new insights. For instance, it makes

it clear that the crucial operation is the twisting of the density due to the dynamics

update. Hence the effectiveness of an estimator rests on its ability to account for this

effect. As another example, it points out the desirability of having persistently exciting

inputs. Returning to the simplified visualization of multiplying two ridge shaped densi-

ties, it is clear that convergence in x(,) depends on the angle between the two ridge lines.
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We want to avoid the two being nearly parallel. The angle is determined primarily by

the rotation from the dynamics update, arid the degree of rotation is in turn determined

by how far away from zero the original ridge was. Therefore, we want to avoid operat-

ing the system with small state values. To do so requires persistent inputs, particularly

for stable systems. Finally, we can assess the impact of the true value of the transition

parameter xzm on the density behavior. Based on the last point, we might think that a

larger true Z(i) would be easier to identify since it leads to larger state values. But note

that the spreading of the density in the dynamics update increases with x~ ), and this in

turn will degrade the convergence of the density in Z(i). It is not clear which effect is

dominant, although I suspect that they roughly balance each other. In this instance, we

would need to go further than the intuitive analysis for a definitive answer. Note,

though, that whether the plant is stable or unstable is not an issue; here there is noth-

ing magic about the stability boundary.

Having developed an intuitive feel for the propagation of the prediction density,

let us now look at tire density. Actually plotting thre density is probably the best way

to visualize it, but may not be really practical for greater than two dimensions. In some

cases, it may be reasonable to plot two dimensional slices of the density, or two dimen-

sional marginal densities, which can be done using conventional plotting. Alternatively,

information such as the first few moments, or location of the peak or peaks can provide

a good feel for the shape of the density in multiple dimensions. Thre entire problem of

visualizing multi-dlimensional surfaces is little explored, and would be worth pursuing.

For the case at hand, there is no trouble plotting the density. Figure 5.2a

shows the prediction density' for a low noise case, Q=R=0.1. The true parameter value

was 1, and the actual initial state was 2. The initial density was Gaussian centered at

(2,2). It is obvious that the ridge line lies along a line as thre earlier analysis predicted.

Figure 5.2b shows the density at the next time step. As you would expect in a low

noise case, there has been tremendous convergence. The convergence is also helped by

tire large initial state value, which resulted in a relatively large amount of rotation on

the first iteration. The rotation of the ridge line is still discernible in this plot.

2. Due to the graphics software used to produce the plots in this chapter, the densities are
displayed as continuous functions rather than the piecewise constant approximations they really
are. Keep in mind the actual functional form.
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Parameter/State Estimation - Standard Case

K= I P--1, Q=R=.Ol, S=O, N=24
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Parameter/State Estimation - Standard Case

K= 2 P=l, Q=R=.Ol, S5=0, N=24
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Figure 5.2 - Parameter /state prediction density for Q =R =0.01
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Figure 5.3 shows the prediction denisity for another case. Here a large measure-

ment noise variance, R1? 1, was chosen to get relatively slow convergence of the density.

For this case, the parameter was 1, the initial state -0.5, and the initial density Gaus-

sian centered at (1,0). Figure 5.3a is a mesh plot showing the density as a three dimen-

sional surface. Although it is not as obvious as in the last plot, it is still apparent that

the ridge line runs at an angle as expected. The shallow angle is to be expected due to

the small initial state. Figure 5.3b shows a contour plot of the log of the same density.

In this plot the increasing spread of the density as z~t increases is clear. Figure 5.4
shows the prediction density for the same run two time steps later. Despite the high

noise, there has been considerable convergence. The ridge line skew is less noticeable on

the mesh plot of 5.4a than the last time. Looking at the contour plot of 5.4b, though,

we see that the ridge line has developed a definite curve. This is easily explained by

thinking again of the intuitive analysis. Since the measurement variance is large, and

* the input variance small, for a first approximation we can neglect the first and third

steps, and the influence of the known input. Now start with a ridge running parallel to

the Z(j) axis. After the first dynamics update the ridge follows a straight line through

the origin. After the second, it follows a parabolic arc, since we mapped (a,b) into

(a,ab) then into (a,a 2 b). After the third, it will follow a cubic. Including the neglected

effects disrupts this nice progression, but the basic mechanism is there.

Any number of parametric studies are possible at this point. It is possible to

look at the effects of varying the noise variances, the initial state and parameter values,

or the initial state and parameter estimates. We can explore different noise and initial

state densities, such as uniform instead of Gaussian, and look at their effects. The pos-

sibilities are virtually limitless. They are, however, not very meaningful without a

specific application in mind. Therefore, we will not pursue this, and instead encourage

users to apply the technique to their particular problem.

5.4. Analysis for Other Unknown Parameters

Hlaving gone through the analysis above for the case of an unknown transition

parameter, it is quite easy to extend the intuitive analysis to other situations. In this

section we will consider four other possible unknown parameters, and do a brief parallel

analysis of the estimation problem for each.
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Parameter/State Estimation - Standard Case

K= I P=I. Q=.Ol, R=l, S=.1. N=24
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01 00

Parameter/State Estimation - Standard Case
K= I P=I, Q=.Ol, R=l, S=.1. N=24
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Figure 5.3 - Parameter/state prediction density for Q=0.01,
R=i, k=1.
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Parameter/State Estimation - Standard Case

K= 3 P=I, Q=.Ol, Rh=l, S=.i, N=24
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Parameter/State Estimation - Standard Case

K= 3 P=I, Q=.Ol, R=l. S=.l, N=24
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Figure 5.4 - Parameter/state prediction density for Q=0.01,
R=I, k=3.
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First, consider the case of an unknown scaling on the input. This is modeled by

xkI Fx - Euk -t Wh

zk -k -t V

where the parameter E is unknown. The nonlinear state model is

(]),A t22 I ()4, 04~ ~ z~A Wk

Zk = (2), vk h(zk , vk)

The grid will be defined as in the previous section. The inverse image of a grid cell is

now given by

H,= {zol)E Ij).(1f 611). 1H) [ x (,)_ j (1),kl t 1. {i)--")-'t"b { ),l+j i , al [ ),ki i 1) -! ) --b (j),*+l-11

F F I}a (),j ,lJ 2) _- I l-fb (2),k +,- z (,)u h 4 (2),k + 1U (2}+ ) + b(),,+ 1- z(,)U k,
2{ ) F 2 F ]

so the inverse image is a parallelogram. This obviously modifies the definitions of the

limit functions f and in (5.1) and (5.2) but does not otherwise affect the equations.

The density behavior for this case is somewhat similar to that for the first case.

Again imagine a uniform prior. A.s before, the measurement density is a straight ridge

parallel to the x(j) axis and loited at (2 )=Z, and it is reproduced by the first measure-

ment update. The system dynamics map the point (a,b) into (a,Fa + bu), so the dynam-

ics update results in a ridge running along the line z( 2)=Fz+z(I)u. Note that the spread

of the density in the X(2) direction does not depend on 1(1). The convolution with the

input noise density spreads the density out in the X(2) direction, resulting in a straight

ridge with its X(2) spread independent of z(,). Note the contrast with the last case, where

the X(2) spread increases with z(,). Processing the next measurement results in hump at

the intersection of the two densities. As before, the degree of convergence depends on

the angle between the two ridge lines, but in this case, the angle depends directly on the

input, not on the state. Zero input results in no convergence along z(,), as would be

expected. In the previous case we wanted to have inputs to keep the system state from

getting small; here we must have inputs to get any convergence at all. Also note that

the spread of the densities does not depend on zt(), so there is no variation in conver-

gence with true value of the parameter.



70

Next consider an unknown scaling in the output equation. The model is

zi -, I = Fz k -t uk + wk

zi liHzA -i v

where the parameter Ht is unknown. The nonlinear state model is

,. ' J = . ),k f = (kuA U 0

X (2),A 2) IJWI h

zk z(1),kZ(2), -+ , k h(ZA , VA)

Note that this model has linear dynamics. Using the same grid as before, a simple com-

putation yields the inverse image set

11 {()3 1a(i),A *I1(i)-!~) b1)k, a(I),k+(()-- I- -f (1'A 1

a(2).k+ ((2)-'!)+b(2),k, Uk a(2).k+ ( (2 5) -+)+b(2),k+f-uh

z~jIF F

which is just a rectangle. Again, this leads to modification of the limit functions in

(5.1). More importantly, we must also change M because of the change in the measure-

ment equation. Equation (5.1) becomes

rk + I i OF= i

:(i~~~~i) - 1(1)i.) ( Z l (2) )
j 2

fI dx(,) f dz(2 (21 R) exp(- 2R

The density behavior for this case is quite different than the first two. Again,

we will start with a uniform prior. The measurement density defined above is a some-

what banana-shaped ridge, with the ridge running along the hyperbola X(2)=z/xZ(). The

isocontours follow hyperbolas in all four quadrants. The dynamics update scales the

density and shifts it in the Z(2) direction, and then the convolution with the input noise

density spreads it out in the Z(2) direction independent of x(,). The result, is essentially a

shifted version of the measurement density. The next measurement update can now be

roughly visualized as the multiplication of two of these densities offset with respect to

each other. If there is lit,e offset, there will be relatively little convergence. On the

other hand, if there is a large offset, the isocontours of the densities will cross at large

:...........................................

. . . . . . . . . . . . . .
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angles. resulting in convergence in both diiiensions. It, contrast to the first two cases, it

is the nonlinear nature of the ineasureirient update that is important, rather than the

dynamics. A few moments sketching the densities for different situations shows that

the best situation is one with large oscillating known inputs. At the extreme, if u=O,

then there is no convergence in (,i). There is also a fairly strong dependence on the true

value of the parameter. Larger true xj tends to amplify the effect of the inputs, and so

the density will converge faster.

Now look at unknown scaling on the measurement noise. The model for this is

ZA 4 1 - Z Z I UA i WA

Z zA -f DV k

where the parameter D is unknown. The nonlinear state model is

XZ,,i t '2): 1" zk f(k,"k) -t H Wk

Z - (2),k -t x(,), k vik h(-,k , vh)

This model has the same dynamics as the last, so the grid and inverse image set are the

same. The measurement noise density ju is changed, however, making (5.1)

| E X k'j(Qs,(2
}

C2 '(, ) fZ(z 11p*,' ))

dx(,) f dx(2) (27 R ) 2-exp(- z,(2

The measurement density for this case is a fan-shaped ridge, with the apex at

z - (O,z), and the ridge line running along z(2)- z. Starting with the ubiquitous uniform

prior, we get a copy of this density after the first measurement update. The system

()nainics niap (a,b) into (a ,Fb t u), resulting in a scaling and shift in the Z(2) direction.

The convolution then spreads the density out in the Z(2 ) direction. The resulting density

is still fan-shaped. Now when the next measurement is processed, we multiply by

another fan-shaped ridge with a parallel ridge line. The result is yet another fan-shaped

ridge, with no convergence in the 1(i) direction. To take an extreme example, suppose

that the true value of x(,) is 0. Then at each measurement update the ridge lines of the

densities would line up. It is easy to see that the density will tiot converge in the Z(i)

h• -). _ -' &..-..........-....... ...-.-.-.......-"..--.,....,........v.-.-....-.-... ....."."" .-. "
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direction. For non-zero Z(,), the ridge lines will be offset. This will tend to reduce the

density for smaller values of z[), but will not affect the higher values. In this case, the

parameter is not identifiable, and this is easily shown by considering the actual density

behavior as we have done.

5.5. Comparisons of Point and Bayes' Estimates

Let's now look at the final use mentioned in Section 5.1. We will use for our

candidate point estimator a minimum variance estimator derived by Liang and

Christensen 1391. Liang has published the results of several simulation studies compar-

ing the filter (referred to hereafter as the MVF) to the EKF for a parameter identifica-

tion problem 140]. In his paper Liang points out the theoretical difficulties of comparing

suboptimal nonlinear filters, and concludes that only detailed numerical simulations can

provide the basis for meaningful comparisons. This is undoubtedly true, but Liang mis-

tIakenly discounts the possibility of comparing the suboptimal filters to the true optimal

solution. The true optimal solution is available for this case as the mean of the condi-

tional density computed via the algorithm derived in this paper (for simplicity, we will

refer to the conditional mean for this case as the Bayes' estimate). What we will do,

then, is extend the analysis of [40] to include the true optimum.

In his paper, Liang explores the behavior of the MVF for three slightly different

discrete-time system models. For this work we will concentrate on the second of the

systems, which is described by the model

- (1)A+ -
1 (I),A o IX)+jk WA

X (2)'A + I~ 1 )A X(2)A 1+10 = PAI

zi Z(l),AZ(2), - vk = h(zk , vA)

Note that the unknown parameter zll) now appears as a scaling factor in the observa-

tion equation as well as in the dynamics, and the model does not include a known input.

This model does not seem to have a clear physical interpretation, and may have been

chosen simply because the EKF does not handle it well.

The equations developed in Section 5.2 can be applied almost directly to this

"model. The main change is in the equations containing jt, which now is given by

o)2

(Z, O (2 R)- -exp(- (Zk-'I)32R )

o2

Z Z ile
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This changes (5.2) to

M ) () a' i " 1),k 1-I}2),k tI *11- i

C. ' ( G(zk - 2 (if l(l ,,ji, ) )- G (zt - Z (,)f2(z(,i,i ,j),R ))

Except for the removal of the input uk, the remaining equations in the section do not

change.

For the above model, Liang looks at eight different combinations of initial con-

ditions and noise variances. We will consider four of those cases, the ones for which the

performance of the MVF and the EKF differ. For all cases, the true parameter value

z(i) is 1.0, the initial value of the state Z(2 ) is chosen randomly from a zero-mean Gaus-

sian distribution, and the initial variances for the state and parameter are 1.0. The ini-

tial density for the Bayes' algorithm is bivariate Gaussian, centered at the initial esti-

mate. The results for each case are based on the average of 25 independent Monte

Carlo runs of the first 30 time steps (one observation per time step).

The first two cases, shown in Figures 5.5 and 5.6, are for small noise variances,

Q=R=0.01. Figure 5.5 shows the results for an initial parameter estimate of 2.0. For

this case, Liang showed that the EKF tended to diverge, while the MVF converged to

the true parameter value after a transient phase. The results here show the MVF con-

verging very slowly, if at all. The Bayes' estimate, though, quickly converges to the

true parameter value. The Bayes estimate of the state is also markedly superior to the

MVF estimate. Clearly, there is a wide margin between the performance of the subop-

timal filter and the true optimal. Figure 5.6 shows the result of making the initial

parameter estimate 0.1. Liang actually used an initial parameter estimate of 0 for this

second case, which causes the EKF" to not respond at all, and adversely affects the tran-

sient response of the MVF. Using 0.1 for the initial parameter estimate seems more rea-

sonable, and can only improve the MVF response. Liang's results show the MVF con-

verging on average to a parameter estimate of approximately 0.6. Figure 5.6 shows

essentially that behavior for the MVF, perhaps improved slightly since it appears to be

moving slowly toward the true value. The Bayes' estimate, on the other hand, con-

verges quickly to near the true value. Note that the Bayes estimate jumps from the ini-

tial estimate to near the true value after the first observation. This rapid convergence

o-....--.,/ ,-.-..-..- ..-..-..... '.-................................,...-..-.,..-........,.......,.....-.....,.-.., . ,,
- .L,. . . . . . .... . . . . . . . . . ..

-
. . ..ail~iifidlli - " II
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Parameter/State Estimation - Liangs Case II
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Figure 5.5 - Averaged parameter/state estimates for Liang's
Case 11, QR =0.1, initial parameter estimate 2.0.
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Parameter/State Estimation - Liangs Case II

Z5 Rep Ave - P=I, Q=R=.O1, S=O, N=24

o =True ..................... ........ 0 ..............
o= Bayes
a = Liang

o5 O"
U)

'A

• n
•

I ,I I I I i I I

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17. 20.0 22.5 25.0 27.5 30.0

Time

r Parameter/State Estimation - Liangs Case II
2 15 Rep Ave - P=p, Q=R=.01, S=0, N=24

o Io=True 4
• II

.: o o =Bayes ,
S.-A= Llang -,,,,, '

0 I'

, ,Io o,
Cuu... "

,,C,)......
0

E.• , -I. 
o. -

°tU 
0  

" •"\ 2 •°

0

o.

0 ,'

0.0 2.5 5.0 7.5 10.0 12.5 15.0 t7.5 20.0 2.5 25.0 27.5 30.0

Time

~Figure 5.6 - Averaged parameter/state estimates for Liang's
- , Case 11, Q =R 0.01, initial parameter estimate 0.1.

.-. .



. . . .. . .. . ' . .~ ~~ ~~ - T,.. . . . .- . .. .

76

appears te be typical of the low noise cases, as would be expected. Even though the

average behavior of the MVF is not too bad, it is rather inconsistent. As an example,

the results shown in Figure 5.7 turned up on one of the test runs. This figure shows the

filter performance for a single Monte Carlo run. Here the MVF actually diverges, while

the optimal estimate performs essentially as the average shown in Figure 5.6.

Throughout the individual runs that. were reviewed, the Bayes' estimate performed very

consistently.

In addition to being concerned with the convergence of the conditional mean to

the true value, we are interested in the convergence of the density as discussed in Sec-

tion 5.3. Even if the mean of the density were close to the true value, we would have

significantly less confidence in the estimate if the density were spread out than if it were

a sharp spike. For an example, consider the model with the noise levels and initial con-

ditions used for Figure 5.5. Figure 5.8 shows the conditional density at time steps 1, 4,

and 8 for a single realization. As we would expect for a low noise case, there is very

rapid convergence in the state after a single measurement. A more measurements are

processed, the density converges in the parameter direction also. In general, the density

is clearly converging as we would like it to. This behavior was also seen consistently in

the other individual runs that were reviewed.

The next two cases show the results of larger noise variances, Q=R=1.0, with

the two initial conditions used above. Figure 5.9 results from the initial parameter esti-

mate 2.0. For this case, Liang shows both the MVF and the EKF converging fairly

rapidly to the true parameter value, with the EKF slightly superior. Here the MVF and

the Bayes' estimates show comparable performance, although the Bayes' estimate tends

to display somewhat smoother convergence. The fairly large oscillations in the MVF

estimates (particularly the state estimate) seen in this figure appear commonly in the

simulations. Figure 5.10 shows the result for an initial estimate of 0.1. Liang's results

for this case show the MVF converging to an estimate of about 0.5, then drifting very

slowly toward the true value. The results here show that the Bayes' estimate converges

more quickly and closer to the true value than t6e MVF. Again, note that the Bayes'

estimate is smoother than the MVF.

These results allow us to generalize Liang's conclusions as follows.

,.o.
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Parameter/State Estimation - Liangs Case II
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Figure 5.7 - Samplu run pararreter.'staLe estimates for Liang's
Case II, Q =R 0.01. initial pdrarmeter estimate 0.1.
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Parameter/State Estimation - Liangs Case Il
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Figure 5.8 - Representative densities for time steps 1, 4, and 8,
for Liaiig's Case 11, Q U =0.01, initial parameter estimate 2.0.
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Parameter/State Estimation - Liangs Case 11
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Parameter/State Estimation - Liangs Case 11
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1. When the level of noise inputs is large enough to mask the effects of nonlineari-

ties, point estimators such as the MVF and EKF tend to perform fairly close to

the optimum, although they may be quite sensitive to initial conditions.

2. Although the MVF is claimed to be 'far superior' to the EKF when the noises

are small (so that the effects of the nonlinearities are not negligible), it is still

far from the optimal. This indicates that the MVF still fails to capture impor-

tant features of the posterior densities.

As a final point in this section, let's look at the effect of including a known

input sequence. As noted above, Liang did not include this factor in his analysis. It is

well-known, however, that the input sequence can have a large impact on the perfor-

mance of the estimator. Hence, we would expect based on theoretical considerations

that including it would improve the performance of the estimators. Figure 5.11 shows a

simulation result for the second case considered above, without an input sequence. Fig-

ure 5.12 shows the result with u, a zero-mean Gaussian sequence with variance 0.01, so

that the input signal to noise ratio is 1. The same noise sequence realizations were used

in both simulations, so the differences are due solely to the inclusion of the known

input. The improvement in the performance of both estimators is quite remarkable.

The MVF estimate goes from essentially nonconvergent to convergent. The Bayes' esti-

mate converges much faster and much closer to the true value. Both state estimates

show the same type of improvement. Of course, this is not the optimal input sequence,

so it may be possible to get even more improvement. Even so, this is a good example of

the performance improvement possible when an input sequence is available.

p . j
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Parameter/State Estimation - Liangs Case I
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Figure 5.11 - Parameter/state estimates for Liang's Case 11,
,.. without known input sequence.

: .-::.-:.:- -.:--::. .-:: .::.:---o::.-. . . .. .. : - :.. . . . . .. , . .Q
.. .. . .. . .. . .. "- , + ": " '-,+ ; ++"" ' .",',- ":",. . - "'- ,' ; -- , '."-",;, . .+, .'.?..'.-':+ -U',-



83

Parameter/State Estimation - Liangs Case II
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Figure 5.12 - Parameter/state estimates for Liang's Case 11,
with known input sequence, signal to noise ratio 1.0.

...........................................



6. APPLICATION TO BEARINGS-ONLY TRACKING

6.1. Problem Deimition

Lets turn now to a more specific problem. The bearings-only tracking problem

is a very important practical problem that arises in a number of situations. The proto-

typical situation is a sea-based sonar tracking problem, where a moving ship (the

receiver) is listening to the acoustic output of another moving ship (the target or

source). The objective is to estimate the speed and location of the source based on the

noisy measurements of the bearing of the sound source relative to the receiver. The

geometry uf this problem is shown in Figure 6.1. The source is located at the point

Pe (p.,,p,.,), with velocity V,. The receiver is located at Pr, and has velocity V,. The

angle e is the bearing of the source relative to the receiver.

tr 4, 40 I

'~'9

pVa.

(EAsr)

Figure 6.1 - Bearings-only tracking geometry.

It is important to point out that the system is only observable when the target

has constant velocity and the receiver maneuvers satisfy certain constraints [41]. In

particular, the system is not observable if the receiver follows a constant velocity path.

This makes at least some sort of receiver maneuver mandatory if we wish to completely

characterize the target position and velocity.
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There are two other particular points to made about this problem. First, the

problem is intrinsically nonlinear, and hence is not addressable by conventional linear

estimation techniques. Second, in realistic situations, there are relatively few measure-

merits available due to the usually short contact, times. Hence the transient perfor-

mance of an estimator is of critical importance. For these reasons, we would expect the

Bayesian approach to be desirable.

A number of different point estimation approaches have been tried. The

extended Kalman filter is the first obvious choice. It has reasonable performance in

many cases, but is prone to premature covariance collapse and solution divergence, due

the interaction and feedback of filter errors 1421. Pseudo-linear formulations have been

suggested to avoid this difficulty, but the resulting filters produce biased estimates when

used with noisy data 1421. Petridis has developed a different approach based on a parti-

tion algorithm 1431. This algorithm seems to avoid the EKF's divergence problems, but

• since it consists of a number of filters operating in parallel, it incurs a large computa-

tional cost. Yet another approach is to work in other than the 'natural' cartesian coor-

dinates. Aidala and Hammel 144] reformulated the problem in terms of modified polar

(MP) coordinates and then applied the EKF. This resulted in a decoupling of certain

terms in the covariance update, so that covariance collapse would not occur. The prob-

lem has also been approached from the Bayesian viewpoint, by calculating a representa-

tion of the posterior density. Bucy J45] used the point mass approximation to look at

the density propagation for an aircraft based problem. Sorenson 1231 used his p-vector

approach in exploring a ship based problem, and used the peak of the approximate pos-

terior density to define the maximum a posteriori estimator.

In this section we will apply the algorithm developed earlier to the bearings-

only tracking problem. First, we will analyze the density propagation from a aualitative

6 point of view first to try to get some additional insight into the problem. Then we will

compare the performance of the conditional mean of the estimated density to the MP

filter for several example scenariob culled from the literature.

6.2. Algorithm Development

The first step is to define the system equations which we will use. As noted

above, there are several possible formulations, each leading to different equations. The

choice of reference frame is extremely important in designing point estimators and has
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been demonstrated to greatly affect the ultimate filter performance. This is because the

errors from the approximations used in the filters depends heavily on the particular

form of the system equations. These choices are rather less important for the Bayesian

formulation, since there are no approximations being made. It is of some importance in

applying the algorithm of this paper, since the choice of state will affect the computa-

tional complexity of the algorithm.

The most commonly used, arid conceptually simplest, form is based on cartesian

coordinates. The main advantages of this formulation are that it results in linear

dynamics and that it is easy to visualize. The state vecte. " defined as the position and

velocity of the source at time step k, so'

S= I p..(k6) p.,1 (k6) v.. v.,,I

where 6 is the time between steps. Note the velocity does not depend on time, since we

are assuming a constant velocity source. The system equations are then

• " 1060
1 06

zk.i = 0 I zk= Fz&

0 0 01

ZA = tan-' +zk-P"(k6)k,7k)
Z(2 ),_Pr,,(k6 )

where (Pr,.(k6),p,,,(k6)) is the position of the receiver at time step k, that is, t=k6. The

observation noise r'h is assumed to be zero-mean white Gaussian noise with variance R.

Note that there is no noise term in the system dynamics. This is for consistency with

previous work, and is not a necessary assumption for the Bayesian approach. Because

there is no plant input noise, the above can be rewritten as an equivalent identification

problem in terms of the initial position of the source. This results in the alternative for-

inulation

." I p.(0) p,p(o) Ve, Ve.,r

A tan-' z "(,)+k6z '(3)Ps()k6
zn-t." Z '(2)+k 6z'-(4P ,(k 6 ) + ht(z ,q/)

I. I apologize for the clash between the convention of using z as the state variable, and that of us-
ing z as the horizontal (east) coordinate. The context should make it clear which meaning is in-
tended.
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where p,,, Pr1,' and t7k are as above. This formulation has even simpler dynamics than

the one above.

It is also possible to reformulate the problem so that the model has nonlinear

dynamics, but is linear in the observation. This is the approach used by Aidala and

[larnriel for their MP filter. In terms of the algorithm in this paper, however, this

tradeoff of observation nonlinearity for system nonlinearity is not appealing. Nonlinear-

ities in the system dynamics can make the inverse image set very unwieldy, and make

the calculation of equation (3.14b) considerably more difficult. Unless the change also

results in a corresponding reduction in the complexity of the integrand, it would not be

worthwhile. In this case it does not, so we will concentrate on the cartesian formula-

tion. Of the two above formulations, the second has the simpler dynamics (basically

none), and since they are otherwise equivalent, we will use it.

Having selected the model, we can now develop the equations to implement the

algorithm. The first step is to define the grid. The easiest grid to use is based on

hyper-rectangles defined by

2, 2

This is definitely not to imply that this is the optimum choice for the grid. It is certain

that other grid definitions could conform more closely to the density shapes and hence

increase the efficiency of the algorithm by minimizing the number of grid cells with

non-negligible mass. For clarity of presentation, however, this simple definition is prob-

ably best.

The next step is to determine the inverse image set defined by equation (3.14a).

Since there are no system dynamics in this case, the inverse image set H, is simply I,

itself. This makes the limits for the integral in equation (3.14b) extremely simple. If

the grid has not been changed from the last time step, the two grid systems coincide

exactly and (3.14b) becomes

7r A k (zz) dz

If we wish o improve the efficiency of the algorithm, we can make the grid dynamic so

that it can conform to the current density. If this is done, the intersection will have to

be calculated in order to evaluate (3.14b). If the new grid is also based on hyper-

rectangles, then the intersection of two cells is also a hyper-rectangle with easily

. ........ ...............................................................
['.':-...."" ... "'''"- ""€""' ''"" ....... .. *d, ,l d l dim .-n -il./



88

calculated edges. Turning now to the integrand, we recall that U=p(zi Z), so that for

this problem

Azz)(2s R)- exp '--( I Zi+k6(,-p,( ) 
2R Z(2 )*+k6Z( 4j)-p,(k6))

You should note that this makes the integral above rather complicated, even for the

simple case of a fixed grid. Evaluating this integral is the primary computational bur-

den in implementing the algorithm for this problem, but little effort was put into optim-

izing the coding for its evaluation.

As pointed out earlier, there is no system input noise for this problem. This

eliminates the need for equation (3.14c). Note that this also negates one of the benefits

of the algorithm presented here; since the convolution does not enter the problem, we

get no benefit from being able to use the FFT technique to evaluate it. Despite this, it

is still worthwhile to apply this algorithm with the expectation of getting a reasonable

approximation to the actual posterior density.

Finally, equations (3.14d) and (3.14e) are implemented directly to normalize the

updated density.

6.3. Qualitative Density Analysis

Often we can learn a great deal by lookirg qualitatively at the density behavior

with time, motivated by an enlightened consideration of the problem from the Bayesian

viewpoint. Qualitative analysis is largely visualizatioi of the density, and imagining the

effects in different situations. Visualization of the drnsity was fairly easy in the last

chapter, where the density was a simple surface in three-spac. Visualization for this

problem is much harder, since most people aren't equipped tL r;rngi,,e surfaces in five

dimensional space. Two possible alternatives to help with the visudC,.ation come to

mind: we can consider 'slices' of the density, or look at the marginal densities. For

slices, we fix two of the four state variables and look at the resulting surface in three-

space. For the marginal densities, we usually consider the joint density of two of the

states, so we again have a surface in three space. The problem with looking at the mar-

ginals is that they tend to obscure the fine detail of the density. Marginals are like pro-

jections of the density onto subspaces, so it is somewhat like trying to guess the shape

of an object from its shadows. Dealing with only slices, though, still leaves the problem

of integrating the individual visualizations to provide an understanding of the entire

-1 2
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density. Neither approach is entirely satisfactory. so both may be necessary to describe

the density behavior.

We begin by reviewing the measurement update function ". The peak of the

function (where the argument of the exponential is zero) lies along the hyperplane

defined b.N

tan( ) X ) k ir 3 v,.. (k 6 )
(Z)~ 4 - z".2) kbz(,} - p,,,(k b )

and contours of the density lie along the related hyperplanes

tan(Z+) - (c) + k6z( 3 ) - pr,z(k6)

z( 2 ) + k6z(4) - pry(kd)

where c determines the density value on the contour. For a particular velocity (fixed

zX(} and z(4)), the image of the density in position space (z(l)xz(2)) is a ridge which gets

wider as it gets further away from the origin. The peak is along the line
1

Z(2 ) tan(z) x() "  C

where C depends on the fixed velocities, the measurement, and the position of the

receiver. So for each fixed velocity slice, the angle of the ridge with respect to the Z(,)

axis is the same, but the intercept changes from slice to slice. Roughly speaking, the

value of p at a point represents the likelihood that a target starting from that point

with the fixed velocity could be responsible for the given observation.

With this in mind, lets look at the propagation of the density in position space

for a fixed velocity. As usual, start with a uniform initial density. At the first time

step (k=-O), C=O, so the p ridge line runs through (0,0) along the first observed bearing

line. Since the prior is uniform, the result of the measurement update is a duplicate of

). Note that i will run along only the positive range half of the bearing line. For the

second neasurement, C is nonzero and presumably z is different than the first, so the

ridge of the prior and the ridge of u intersect. The multiplication of the measurement

update results in a hump at the intersection. The spread will depend on the width of

the ridges at the intersection and on the angle of the intersection. The location of the

hump identifies the appropriate starting point for a target with the given velocity to

meet the observations. With the third measurement, we get yet another C, z, and p.

This time, the p ridge may or may not align with the peak in the prior. If it does not,

the result is attenuation of the peak. This indicates that fixed velocity is not

°.2

°
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compatible with the observations. The total probability associated with this slice will

decline. If pa does align with the peak in the prior, thle peak is accentuated. In this

way, certain velocity, slices will build up peaks at particular locations. The height of the

peak and its spread is indicative of thle likelihood that the velocity associated with that

slice could be associated with thle observations. Telcto ftepa ie h

required initial location for that velocity to have given those measurements. Taken

together, thle peaks for all thle velocity slices form a line in thle state space, giving a set

of likely initial position/ velocity pairs.

When the receiver maneuvers, it changes the progression of C and z. If we

were starting from a uniform prior, this would build up a different line through the

state space. Instead, we are starting with the density resulting from all the observations

before thle maneuver, In some velocity slices, thle peaks from the before and after

maneuver observations will be far apart. This indicates that there is not likely that a

single starting point could explain both sets of observations. In those slices, both peaks

will be attenuated. In others, thle peaks will be close together, resulting in an accen-

tuated peak. In this way the most likely of the position/velocity pairs are picked out.

In terms of the entire density, we call imagine the first ju as centered on a verti-

cal plane. Successive ps are rotated with respect to the first, but all intersecting along a

line. Tfhe receiver maneuver changes the rotation so that thle intersection of succeeding

As is along a different line. The intersection of these two lines determines the eventual

peak of tile full density. Actually, this is thle idealized behavior. The presence of noise

perturbs tile observations from the natural progression, so that the hyperplanes no

longer intersect along a single line. For somne noise sequences, this can mimic the effect

of a smnall receiver maneuver by appearing to produce two distinct intersecting lines.

This canl result iii apparent convergence, or false observability. These effects usually

average out, but can give temporary spurious peaks in the density, particularly before

the mianeuver.

T[le behavior iii fixed position slices is thle same. For a fixed position, the den-

sity lin velocity space converges to the velocity most likely to have produced the given
0 observations starting fromn the fixed position. If tile given position is not compatible

with thle measuremnents, the density in that slice flattens out and goes to zero.

It is now fairly easy to see what the marginal densities will look like. After the

first measuremrent, tile Marginal position density will be a replica of the first u, since
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each fixed velocity slice is identical. The umarginal velocity density, though, will still be

uniformi. As meiasuremients are processed, the mtarginal densities will converge to ridges,

with peaks along the projections of the line that the peak of the entire density is on.

After the maneuver, the marginal densities will begin to converge to peaks. Note that it

is riot appropriate to imagine the marginal density as the product of the before

maneuver and after maneuver marginal densities as we did with the entire density.

What conclusions call we draw from this analysis? Two come quickly to mind.

First, we see the perhaps obvious relationship between distance and convergence. Lo~ok-

ing again at a fixed velocity slice, we note that the spread of U in the vicinity of the

peak is proportional to the range to the target for the current measurement for a target

with that initial location and velocity. Thus, we will get better convergence in the true

velocity slice if we can maneuver to keep the range to the target at a minimum for all

the measurements. As a corollary, this says that convergence will be better for a target

that happens to be closer, than one which is far away. Second, it provides us a poten-

tial criterion for picking better maneuvers. Recall tile second measurement update

described above. We noted that the convergence of the peak in the fixed velocity slice

depended on the angle of intersection of the two ridge lines. If the two are nearly paral-

lel, convergence will be mostly perpendicular to the original ridge line. If they are at

right angles, the convergence will be mostly along the original ridge line. This suggests

that we should try to maneuver so as to get a wide range of bearings, to ensure conver-

gence in all directions. The other effect that a maneuver has is in shifting the mutual

intersection line of the succeeding us. For best convergence, we would like the new line

to be skewed away from the old line as much as possible. Although it has not been

explored in this paper, it is possible that strategies could be developed with this in

mind.

6.4. Comparison of the Conditional Mean to a Point Estimator

As we discussed in the last chapter, one use of the Bayesian approach is in

describing the behavior of the true optimal estimate for comparison to suboptimal or

app)roximlate estimnators. In this section we compare tile mean of the conditional density

to Aidala amid Hlammel's MP filter. As in the last chapter, the point estimator is

intended to approximate the minimum variance estimate of the state. The mean of the

posterior density, on the other hand, is the minimum variance estimate.
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The first issue in using our approach is lio%% iany points to use iii the grid.

Sortie preliminary experiments were run using between six and ten points on each

dimension. All the runs used the samne geomnetry and random number seed to insure

comparability. The runs showed continued change as the number of points increased,

although the size of the change decreased arid was fairly small between the nine and ten

poinit runs. This coupled with the rapidly increasing computational and storage require-

inents suggested that nine or ten points on eachi dimension would be satisfactory. Since

we are riot using a particularly fine grid, it is worth emphasizing that this section is

really a comparison of two approximate techniques. T[he approximate density is a close

approximation to the true density, but it is not an exact representation.

In this comparison, we will look at four different scenarios (target/ receiver

geometries) gathered from other papers on the bearings-only problem. For each

scenario we will present typical individual runs. Each run covers 16 minutes, with one

sample per minute. The receiver always starts at coordinates (0,0) and proceeds at con-

stant velocity for the first 8 time steps. Immediately after the eighth observation, the

receiver executes an instantaneous maneuver to a new velocity, and maintains that velo-

city until the end of the run. The target starts at a specified position, and proceeds at

constant velocity for the entire run. All distances are in meters, and speeds in meters

per minute. The first plot of each set shows the target and receiver tracks for the entire

run, and the estimated target tracks for time steps nine through sixteen. The second

figure of each set shows the estimator errors versus time. The errors are plotted as per-

centage error in range to target and speed of target, and degree error in bearing to tar-

get and target heading.

Filter initialization is always a difficulty. The MP filter was initialized in

accord with tire recommiendations in Aidala and Hammel's paper, with the exception

that the initial range estimate was adjusted to near the true initial range instead of

being fixed at 10 km. The initial density for the Bayes' algorithm was uniform over the

initial grid, which in turn was chosen to include the true position. Aside from the

requirunirent that the initial grid must contain the true initial conditions, it is clear that

we want to pick a small grid to increase the resolution in the main region of the density.

What may not be clear is that we also need the grid to be large enough to cover all the

density, so that the mean is accurate. With an adjustable grid, it is usually better to

err on the large side and let the grid adapt to the density.
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.The first two examples are from Aidala and Htammel's paper that introduced

the MI filter 144j. The first is their long range scenario. The target is initially at

P,(O)=(24688,o) with velocit) V0 (617,0). The receiver begins with velocity Vr,(617,617)

and has V, (617,- 617) after the maneuver. The noise variance is R 1.4 degrees

squared. The initial grid for the Bayes' algorithm is defined by

{'X(E (15000,40000) 1 Z(2)C (-2000,2000) -) Z(_3 ) (100,1000) ; -'()t (-400,400)}

This is a somewhat unrealistic example, since the receiver is managing to follow the tar-

get at same v, velocity. Figure 6.2 shows the tracks for this example. The two esti-

mates show similar performance. Turning to the error plots in Figure 6.3, we see that

the Bayes' mean has somewhat better range and speed estimates, and essentially equal

bearing and heading errors. This is not surprising, since the bearings to the target a

fairly small (note the different x and y scales) making the linearization of the EKF more

accurate.

The second example is Aidala and Hammel's short range scenario. It is the

same as above except that the target is initially at P,(0)=(2468,0), and the initial Bayes

grid is defined by

{z(,)E (1500,3000) ; Z(2)E (-300,300) ; x(S)E (100,1000) ; z(4)E (-300,300)}

We have two examples for this scenario, differing only in the specific noise sequences

used. In the first (Figures 6.4 and 6.5), the MP filter manages to maintain a good esti-

mate of the bearing to the target, but otherwise does quite poorly. The Bayes' mean on

the other hand does very well. The data for time step eight (not graphed), shows that

both estimators had comparable estimates at that time, with the MP filter having a

somewhat larger range estimate. After the ninth measurement, both reduced the

estimated range, but the MP filter overcompensated and could rot recover. In the

second example (Figures 6.6 and 6.7), we see a more extreme case. Here, the MP filter

calnot even maintain lock on the target bearing. The Bayes' mean begins with a worse

estimate than the previous case, but converges anyway.

The behavior of the Bayes' mean is clearer if we look at the approximate den-

sity. Figure 6.8 shows the marginal initial position density at time steps eight, ten, and

twelve for the second of the above cases. At time step eight, the density has converged

along the original bearing line, but not in range. According to our discussion in the pre-

vious section, though, the height of the ridge should be nearly constant, but it is not.
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Bearings-Only Est - Bayes Mean vs MP EKF
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Bearings-Only Est - Bayes Mean vs MP EKF
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This is a result of the algorithm averaging ui over fixed size cells. Recall that in a fixed

velocity slice u is a wedge shaped ridge with a constant height along the ridge line. The

average over a cell near the origin on the ridge line will be small, since p rolls off

quickly. On the other hand, the average over a cell away from the origin will be larger,

since p remains near its maximum over a larger area. This effect is predicted by the

earlier error analysis, i.e., tie error in the approxiniation increases when the density is

sharply peaked in relation to the grid size. Also note that the peak of the density is at

the extreme edge of the grid, implying that the grid does not cover the entire density.

This is to be expected, since the actual density is infinite in the range direction at this

point. The loss of mass is not a problem in this application, since we are not performing

the convolution step (remember we have no plant noise). Hence, the prediction density

has only local dependencies and is not affected by the loss of mass. Following the

maneuver, however, the density begins to converge in range, and by time step ten we

see marked convergence. Note that the grid almost entirely covers the density. There

appears to be some mass left off at the far edge, so the calculated mean range is prob-

ably a bit on the short side. By time step twelve, the density has converged enough

that the grid effectively covers it entirely, and it exhibits a strong central peak. There

is also a noticeable secondary peak, but it is gone by the fourteenth time step.

The next scenario comes from Sorenson's p-vector paper 123). The target is ini-
tially at P,(0)=(2164,-190) with velocity V.=(-280,310). The receiver begins with velo-

city V,=(63,94) and turns to V,=(-94,63) after the maneuver. The noise variance is

R=0.5 degrees squared. The initial grid for the Bayes' algorithm is defined by

f{z(,)E (1500,3200) ; Z(2 C (-800,800); z()E (-500,100) ; z(4)E (-100,500)}

Figures 6.9 and 6.10 display the results for this case. The MP filter gets a good esti-

mate of the true bearing to the target, but does very poorly in all other regards. The

Ilayes' mean does much better, but still not terribly well. Figure 6.11 shows the density

for this case at time steps nine and sixteen. The density at step nine (first measure-

nmrit after the maneuver), shows some convergence in range, but the very little over the

followiig measurements. This is due in part to the fact that the point on closest

approach occurs at about the sixth time step, well before the maneuver. Hence, the

spread of the measurement density near the true range is getting wider with each meas-

urement, severely curtailing the possible convergence.

"'""..'., ................................. . .ud . ............ %" . .
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Bearings-Only Est - Bayes Mean vs MIP EKF
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Sorenson P-Vector Example
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The last example is from a paper by Aidala on Kalman filter behavior [421. The

target is initially at P.(0) .(4383,-383) with velocity V. -- 482,575). The receiver begins

with velocity V,=(98,169) and turns to V, (--177,82) after the maneuver. The noise

variance is R - 9.0 degrees squared. The initial grid for the Bayes' algorithm is defined

by

{Xzi)' (3000,6000) z~1 -1000,100) ;Z(3)( (-600,100) ; Z( 4 )c (0,800)1}

This is a particularly difficult scenario due to the long range and high observation noise

level. As can be seen in Figures 6.12 and 6.13, the MP estimate diverges for this case.

At time step eight (not graphed), immediately before the maneuver, the MP filter esti-

mate is fairly close to the true value, though not as close as the Bayes' mean. The first

measurement after the maneuver causes the MP range estimate to get very large. The

next measurement induces such a large residual that the range estimate goes negative,

and the MP filter then locks onto this 'negative' track, giving a bearing error of roughly

180 To check whether this behavior was due to the particular noise sequence, the

MP filter was rerun ten times using different random number sequences. The same

behavior was exhibited for all runs, indicating that it is a result of the geometry or the

initialization of the MP filter. The Bayes' mean, on the other hand, does well, although

not as well as the graph of the tracks would seem to indicate due to scale of plot.

These results confirm the advantages of using the conditional mean of the

approximate density as an estimator. The consistently good performance of the mean in

turn confirms a reasonable degree of accuracy in the approximate density generated by

the algorithm. These results also indicate that the MP filter does not live up to theoret-

ical limits, since it does not even match the mean of the approximate density. We also

see that the MP filter has extremely poor performance for at least some geometries.

The good results from the approximate Bayes' mean come at a price, however.

The algorithm took roughly 50 seconds of central processing time on a CDC CYBER

computer per time step for a lox loxlox10 grid. (Even so, this is roughly real time,

since iiost sea-based applications have one minute time steps.) The most time consum-

ing portion of of the algorithm is the integration of the measurement density. In fact,

approximately 90% of the program run time is spent in the integration routine. Since

no vigorous attempt was made to optimize this part of the program, it is reasonable to

expect that it could be improved considerably. The program could also be speeded up

by taking advantage of the considerable parallelism in the algorithm. Even if the

. ...... o.. . .
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computational burden remains too large for on-line irriplemfenLation, the technique is

still valuable as a benchmark for other approximate estimators.



7. SUMMARY AND CONCLUSIONS

Trhis dissertation has presented the derivation and application of a new algo-

rithin for recursively generating an approximation of the conditional state density for a

nonlinear, discrete-time system.

The algorithm is derived by taking the formal recursive equations for the condi-

tional density and consistently using piece-wise constant approximations for the various

constituent densities. The resulting algorithm is given by equation set (3.14). As an

interesting aside, the algorithm can also be derived by considering the recursive calcula-

tion of the probability mass associated with each grid cell. In other words, the algo-

rithm can also be thought of as a probability mass filter.

There are two main advantages to this algorithm. First, the t'me update

becomes a discrete linear convolution, instead of a nonlinear convolution as in other

algorithms. This allows the convolution to be evaluated using FET techniques, costing

O(3N~n(N)-fN) operations instead of 0(N2 ) operations, where N is the number of grid

points. Second, the algorithm allows a thorough analysis of the propagation of the error

in the approximate density. The error analysis shows that the increase in the error at

each iteration is bounded, although the bound is not very small. More importantly, the

analysis yields a characterization of the situations where large error growth could be

expected. This characterization indicates that we can expect the error growth to be far

less than the bound in most cases of interest. The expected error stability was demon-

strated by extensive comparisons of the approximate density to the true density for a

linear time-invariant system with Gaussian noises. The results demonstrate the stabil-

ity and accuracy of the algorithm over a wide range of conditions.

For the next two applications, the algorithm was considered as a tool in imple-

menting a Bayesian approach. Two common but problematic nonlinear systems were

considered. The first was the case of a scalar linear system with an unknown parame-

ter. T[le objective was to estirmate both the state and the parameter simultaneously.

Th le second case was that of a moving receiver taking noisy bearing measurements of a

moving adrget, and trying to estimate the target's position. In both cases the specific

equations for implementing the algorithm were derived, and used to augmient a qualita-

tive analysis of the density behavior. The algorithm was then used to calculate an

approximation to the conditional density, which in turn yielded the conditional mean,
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which is the minimum variance estimator. This approximation to the optimal estimate

was then compared to appropriate point estimators for each case, showing the superior-

ity of the mean of the approximate densit).

We obtain several benefit!; from this combination of the Bayesian approach and

this new algorithm. First, one can develop considerable insight into system behavior by

considering the problem in terms of the probabilit) densities. This provides a unique

perspective not available otherwise. Vie algorithm augments this by providing a means

of calculating the densities so that their behavior can be examined. Second, the combi-

nation provides a benchmark for all other estimation schemes. Since the actual density

function is available, the true optimum estimate for any given loss function can be cal-

culated. Thus, the performance of any other estimator can be compared to the beat

possible performance. Third, we could consider actually using this combination to pro-

vide an optimal estimator for online use. This would be particularly useful in cases

where the transient performance is critical. The algorithm is currently fairly expensive

computationally, but no attempt had been made to take advantage of its parallelism.

Customized computer architectures would undoubtedly provide immense increases in

speed.

In a broad sense, this dissertation shows the advantages of taking the Bayesian

view, and provides an improved tool for implementing a Bayesian approach. Taking a

Bayesian view can lead to a deeper understanding of the behavior of the system, and

hence to a better appreciation of the potentials and limitations of approximate estima-

tors. At best, the Bayesian approach can actually provide the optimal estimate for a

given loss function. At worst, it provides a valuable benchmark for the performance of

other estimators.
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